
We thank to Reviewers 1, 2 and 3 (who gave us marks 7, 8 and 6, respectively) for their pertinent remarks.1

R1+R3: Contribution. We agree that the optimization counterpart of SPLA can be related to Passty algorithm.2

However, it is a much more general optimization algorithm than Passty since all the functions are allowed to be3

expectations treated through stochastic gradients/stochastic prox. Therefore, we call it Stochastic Passty. In the4

optimization literature, the non asymptotic theory of this algorithm is still unknown. The only known particular cases5

are n = 1 and G1 deterministic (prox-SGD), and the case F = 0 and n = 1 (Stochastic Proximal Point Algorithm,6

[29]). We were inspired by the proof structure of [17] (we will update this reference as it is published in JMLR), which7

is very adaptive. It allows to separate the analysis of SPLA into two pieces: the analysis of the optimization counterpart8

(here, Stochastic Passty) and the analysis of the Gaussian noise. Here, all the non asymptotic analysis of Stochastic9

Passty had to be done and involves modern tools of convex analysis such as random prox and random subdifferentials.10

R1+R2+R3: Corollaries. We agree that we could provide more insights on the corollaries (Cor). As suggested by R211

and R3, we can compare the bounds with the one of [17]. First, in the particular case n = 1 and G1 deterministic, SPLA12

boils down to the algorithm of [17, Section 4.2], Cor2 matches exactly Cor18 of [17] and Cor3 matches Cor221. Cor413

has no counterpart in [17]. We now focus on the case F = 0 and n = 1 of SPLA, as it concentrates the innovations of14

our work. In this case, L = 0 and σF = 0. Compared to SSLA, our Cor2 matches with Cor14 of [17]. Actually, our15

constant C in Cor2 might be better because C = L2
G1
≤M2 +D2 1, due to the fact that we only need to bound the L216

norm of the minimal section (and not of any subgradient as in [17])1. In summary, [17] only covers the case n = 1 and17

G1 deterministic of Cor2 and Cor3, and doesn’t cover Cor4. The main advantage of SPLA over SSLA is its numerical18

stability (because SPLA is a proximal method [41], see the next paragraph).19

R1+R2: Simulation. We agree that we could improve the experimental section by using a ground truth. We will20

add the following comparison of SSLA and SPLA in the case F = 0 and n = 1. Let U = |x| = Eξ(|x| + xξ)21

(g1(x, s) = |x|+ xs), where ξ is standard Gaussian. µ? ∝ exp(−U) is a standard Laplace distribution in R. In this22

case, L = α = σF = 0 and C = L2
G1

= 2. We shall illustrate the bound on KL(µx̂k |µ?) (Cor2 for SPLA and Cor14 of23

[17] for SSLA) for both algorithms using histograms. Note that the distribution µx̂k of x̂k is a (deterministic) mixture of24

the µxj : µx̂k = 1
k

∑k
j=1 µxj . Using Pinsker inequality, we can obtain a bound on the total variation distance between25

µx̂k and µ? from the bound on KL, and this can be illustrated by histograms1. In Figure 1, we take γ = 10 and do 10526

iterations of both algorithms. Note that here the complexity of SPLA and SSLA are the same. SPLA enjoys the the well

Figure 1: Comparison between histograms of SPLA and SSLA and the true density 0.5 exp(−|x|).
27

known advantages of proximal methods [41]: precision, numerical stability (less outliers), and robustness to step size.28

R2+R3: Motivations. There is an abundance of instances of the problem minU =
∑n
i=1 gi, where n is large, each29

proxγgi has a closed form, but proxU is intractable (as hard as minimizing U ); e.g., SVM, logistic regression (see30

footnote Page 2), overlapping group lasso, TV regularization (see l. 210), see also [16, Section 2]. All these instances31

can be seen as MAP of ∝ exp(−U) ([21,38,43,46]) and can be tackled by SPLA1. For the advantage of sampling a32

posteriori vs MAP for our example, see [19, Abstract, Paragraph 4.2.1 and 4.2.2]. Sampling allows to avoid overfitting1.33

R2: Minor comments. We especially thank R2 for his/her detailed comments. All minor comments will be easily34

addressed in the camera-ready version of the paper,1 e.g., we will replace the sketch of the proof by a remark on gradient35

flows, remarks of R2 on l.382 and Lemma 6 are due to minor typos, and l. 449 and 477 will be easily clarified.36

R3: Trade-offs. We shall illustrate our answer on l.212. As R3 suggested, n is analogous to the minibatch size in37

SGD. The larger n, the better the approximation of TV by the empirical mean (classical trade-off of SGD). Once n is38

fixed, one have to choose the level of splitting (i.e either treat the full sum in one prox or split each term of the sum).39

Less splitting is better: splitting is basically approximating the full prox by a combination of many prox (similar to40

the trade-off of SGD). As R3 says, we don’t gain by splitting: one can check that the value of C doesn’t change by41

treating g as g/2 + g/2, but in the latter case, two prox are needed at each iteration (so the computation time is twice).42

However, our key point in this work is that splitting is often unavoidable (see l. 210 and the paragraph “Motivations”).43

Finally, the value of C is smaller (better) if the noises impacting the gi, i ≥ 2 are independent1.44

1We will provide more details in the paper/supplementary but not here due to the lack of space.


