
We thank the reviewers for the positive comments, highlighting that our ‘motivation, explanation, ablation and1

numerical performance are all quite good’, with ‘consistent improvement over the other algorithms’ on two benchmarks2

comparing ten different methods, and an ‘icing-on-the-cake real medical application’. Both R2 and R3 point out the3

contribution of combining global and local feature alignments with episodic training for domain generalization (DG).4

R1’s main concern regarding the DG problem setting is extensively clarified. We ran additional experiments regarding5

ResNet-18/50 for R2, and JiGen as baseline for R3 (please see the table at the end). This rebuttal also clarifies all other6

minor questions. We will add all these in the final version to further strengthen our contribution.7

Response to Reviewer #18

Problem setting: (i) DG considers how to learn a model for a single task from a number of source domains and test it9

on unseen domains, in contrast with MAML’s assumption of training on a variety of learning tasks for solving new10

tasks. (ii) We also clarify that DG is different from domain adaptation (DA), as DG assumes no data is available from11

the target domain during training (L22–25). (iii) In DG, source and target domains correspond to joint distributions12

Pk(x, y) and P∗(x, y) defined over input and label spaces X ×Y . It assumes there exist domain-invariant patterns13

(i.e. semantic features) in the marginals Pk(x) and P∗(x), which can be extracted to learn an estimate of P (y |x) that14

performs well across seen and unseen domains. (iv) Thanks for pointing out the theoretical papers on multi-source to15

single-target adaptation; we will revise the Sec. 2 accordingly. Our DG definition and experimental setting follow the16

wide literature [1, 12, 22–25, 27, 31, 32] on this topic, but we agree a more theoretical discussion would be beneficial.17

Design choices: (i) The class-specific average feature z̄(k)c is considered as a compact semantic ‘concept’ of each class.18

Computing soft labels from the features, rather than averaging final predictions, reflects our goal of explicit regularization19

in feature space. (ii) We found no major theoretical reason to prefer Jensen–Shannon (JS) over symmetrized KL (a.k.a.20

Jeffreys divergence) in our context. In preliminary experiments, we did try JS but obtained worse empirical results.21

(iii) The ‘linear-sized random subset of pairs’ (L188) means that we can obtain an efficient unbiased O(N) estimator of22

the loss by e.g. shuffling and iterating over (2i− 1, 2i), i = 1, . . . , bN/2c, rather than enumerating O(N2) pairs.23

Experiments: (i) All results reported for our method and baselines are the average over 3 runs. Error bars in Table 324

are standard deviation. We will add error bars and statistical significance to Tables 1, 2, and 4. (ii) We clip the gradients25

to prevent them from exploding, because our inner meta-update needs to be implemented with plain gradient descent26

(not using an off-the-shelf optimizer). This follows the practice of MAML. (iii) We chose the margin ξ heuristically,27

based on preliminary observations of the distances within and between the clusters of class features. (iv) Tables 1 and 228

have different columns because not all of those papers reported results on both benchmarks.29

Response to Reviewer #230

Engineering issues: (i) We had no difficulty in setting the hyperparameters (e.g. learning rates and loss coefficients).31

Our heuristic choices worked well and other trials did not show much change. (ii) Computing second-order gradients32

does not excessively slow down training—in MAML [10] (basis of our meta-learning scheme), it is roughly 33% slower33

than a first-order approximation. (iii) Our Lglobal can scale to numerous domains, by randomly sampling subsets of34

meta-train and meta-test domains at each iteration, similarly to how MAML uses mini-batches of tasks. As our datasets35

have only few domains, we used all of them (|Dtr|=2 and |Dte|=1, with one hold-out test domain).36

ResNet backbone: Thank you for the suggestion. We now ran experiments with ResNet-18/50 on the PACS benchmark.37

Our initial results shown in the table (mean ± std. dev. over 3 runs) are very promising, where our MASF consistently38

improves over DeepAll baseline. We will add more systematic ResNet experiments in the final version.39

Response to Reviewer #340

Local loss: Note that we employ either contrastive or triplet loss for local alignment, but not both simultaneously.41

While contrastive loss has cheaper computational cost, it enforces much tighter constraints than triplet loss. As we42

argue in L179–182, contrastive loss is a good choice for complex tasks with mild domain shift (e.g. medical image43

segmentation), and triplet loss is adopted when domains are radically different (e.g. PACS benchmark).44

Additional baseline: We reproduced the results of JiGen [3] using their released code, and present here preliminary45

results of using JiGen as the baseline with our proposed Lglobal (mean ± std. dev. over 3 runs). We find that our global46

alignment is indeed complementary to JiGen’s task-agnostic loss. Thanks for the inspiring suggestion. We will further47

study the generic efficacy of our global and local semantic feature alignments in future work.48

ResNet-18 ResNet-50 JiGen as baseline (with AlexNet)

Domain DeepAll MASF (ours) DeepAll MASF (ours) JiGen [3] Reproduced +Lglobal

Art-painting 77.38± 0.15 80.29± 0.18 81.41± 0.16 82.89± 0.16 67.63 67.60± 0.06 68.36± 0.10
Cartoon 75.65± 0.11 77.17± 0.08 78.61± 0.17 80.49± 0.21 71.71 71.82± 0.17 71.91± 0.11
Photo 94.25± 0.09 94.99± 0.09 94.83± 0.06 95.01± 0.10 89.00 89.66± 0.12 89.80± 0.09
Sketch 69.64± 0.25 71.69± 0.22 69.69± 0.11 72.29± 0.15 65.18 65.52± 0.15 66.73± 0.15


