
We thank the reviewers for their overall positive feedback.1

The main concern raised by Reviewer #2 is that Assumption 3, which requires that the positive examples are sampled2

within a margin γ from the boundaries of the set Kn, makes the overall results too weak. Reviewer #2 rightly noted3

that for the distributions presented in the paper, γ should decay exponentially with n, and this may seem to be a strong4

requirement. While this is a valid concern, we stress that we did not use this assumption at all for the results on failure5

of gradient-descent. Since having a margin γ can only help the optimization, dropping this assumption simply makes6

the optimization harder, hence these results still hold. Similarly, other negative results in the paper, namely - the7

inability of shallow networks to express fractal distributions, hold without Assumption 3: this assumption only makes8

the approximation problem easier.9

In fact, the only results that rely on Assumption 3 is Theorem 1 and its corollaries, which give positive results, stating10

that fractal distributions can be efficiently expressed by deep networks. While the existence of a margin simplifies11

the construction made in the proof of this theorem, we can prove this theorem even without Assumption 3. We give12

a sketch of such proof below. To summarize, in order to answer the concern of Reveiwer #2 we will completely13

remove Assumption 3 from the final version, and adjust all the theorems accordingly.14
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Figure 1: Performance on the “fine” Vicsek distribution.

Following the suggestion of Reviewer #3, we ran an ex-15

periment on the Vicsek distribution of depth 6, where16

the examples are concentrated on the “fine” details of17

the fractal. Such distribution is hard to approximate by18

a shallow network, as shown in our theoretical analysis.19

We trained networks of various depth and width on this20

distribution (as in the experiments described in the orig-21

inal submission). The results are shown in Figure 1. As22

could be seen clearly, unlike distributions with “coarse”23

approximation curve (shown in the original submission),24

in this case the benefit of depth is not noticeable, and all25

architectures achieve an accuracy of slightly more than26

0.5 (i.e., chance level performance).27

We will additionally fix other minor issues raised by the28

reviewers in the final version.29

Proof Sketch of Theorem 1 without Assumption 330

Lemma 2 (without Assumption 3, standard construction of a ReLU network) There exists a neural-network with two31

hidden-layers such that NW,B(x) < 0 for x /∈ [0, 1]d, and NW,B(x) ≥ 0 for x ∈ [0, 1]d.32

Lemma 3 (without Assumption 3) There exists a neural-network of width max{dr, 3d} with two hidden-layers (k =33

3dr, t = 3) such that for any n we have: NW,B(Kn) ⊆ Kn−1 and NW,B(K1 \Kn) ⊆ X \Kn−134

Proof Simple modification to the proof of Lemma 3 in the original submission.35

36

Lemma 4 (without Assumption 3) There exists a neural-network of width 2dr with two hidden-layers (k = 2dr, t = 3)37

such that for any n we have: NW,B(X \K1) < 0 and NW,B(K1) ≥ 0.38

Proof Using Lemma 2, and following the same proof of Lemma 4 in the original submission.39

40

Proof of Theorem 1 (without Assumption 3). We follow a proof similar to the one given in the original submission.41

Instead of the original definition of h, we define h(x) = [g(x1...d),xd+1 − σ(xd+1 − g̃(x1...d))]. Then, constructing42

H as in the original proof satisfies that H(x)d+1 < 0 if and only if x /∈ Kn: if the d + 1 coordinate of some layer43

becomes negative, it stays negative throughout the network (since the d+1 coordinate of each layer is just the minimum44

of the d+ 1 coordinates of previous layers). Therefore, a network that outputs H(x)d+1 achieves the required.45

46


