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We thank the reviewers for their overall positive feedback.

The main concern raised by Reviewer #2 is that Assumption 3, which requires that the positive examples are sampled
within a margin v from the boundaries of the set /,,, makes the overall results too weak. Reviewer #2 rightly noted
that for the distributions presented in the paper, v should decay exponentially with n, and this may seem to be a strong
requirement. While this is a valid concern, we stress that we did not use this assumption at all for the results on failure
of gradient-descent. Since having a margin « can only help the optimization, dropping this assumption simply makes
the optimization harder, hence these results still hold. Similarly, other negative results in the paper, namely - the
inability of shallow networks to express fractal distributions, hold without Assumption 3: this assumption only makes
the approximation problem easier.

In fact, the only results that rely on Assumption 3 is Theorem 1 and its corollaries, which give positive results, stating
that fractal distributions can be efficiently expressed by deep networks. While the existence of a margin simplifies
the construction made in the proof of this theorem, we can prove this theorem even without Assumption 3. We give
a sketch of such proof below. To summarize, in order to answer the concern of Reveiwer #2 we will completely
remove Assumption 3 from the final version, and adjust all the theorems accordingly.

Following the suggestion of Reviewer #3, we ran an ex-
periment on the Vicsek distribution of depth 6, where

the examples are concentrated on the “fine” details of 0.8 -

the fractal. Such distribution is hard to approximate by - L
a shallow network, as shown in our theoretical analysis. > 0.7 - — =
We trained networks of various depth and width on this § t=3
distribution (as in the experiments described in the orig- 3 0.6 - —t=4
inal submission). The results are shown in Figure[I] As g 05 = A~ =5
could be seen clearly, unlike distributions with “coarse” )

approximation curve (shown in the original submission), 0.4 -

in this case the benefit of depth is not noticeable, and all ' 5‘0 1 60 1 !’)O 2(‘)0

architectures achieve an accuracy of slightly more than

0.5 (i.e., chance level performance). width

We will additionally fix other minor issues raised by the

. . . Figure 1: Performance on the “fine” Vicsek distribution.
reviewers in the final version.

Proof Sketch of Theorem 1 without Assumption 3

Lemma 2 (without Assumption 3, standard construction of a ReLU network) There exists a neural-network with two
hidden-layers such that Nw g(x) < 0 for ¢ [0,1]%, and Nw g(x) > 0 for z € [0, 1]%

Lemma 3 (without Assumption 3) There exists a neural-network of width max{dr, 3d} with two hidden-layers (k =
3dr,t = 3) such that for any n we have: Nw g(K,) C K,—1 and Nw g(K1 \ K,) C X \ K,,_1

Proof Simple modification to the proof of Lemma 3 in the original submission. |

Lemma 4 (without Assumption 3) There exists a neural-network of width 2dr with two hidden-layers (k = 2dr,t = 3)
such that for any n we have: Nw g(X \ K1) < 0 and Nw, g(K1) > 0.

Proof Using Lemma[2] and following the same proof of Lemma 4 in the original submission. |

Proof of Theorem 1 (without Assumption 3). We follow a proof similar to the one given in the original submission.
Instead of the original definition of h, we define h(x) = [g(®1..4), ®a+1 — 0(€4+1 — §(@1...4))]- Then, constructing
H as in the original proof satisfies that H (x)44+1 < 0 if and only if ¢ K,,: if the d + 1 coordinate of some layer
becomes negative, it stays negative throughout the network (since the d + 1 coordinate of each layer is just the minimum
of the d + 1 coordinates of previous layers). Therefore, a network that outputs H ()41 achieves the required. |



