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Figure 1: Pressured points for different datasets. For each of four datasets, left plot is the ground truth and the right plot
is an embedding with marker size indicating pressure value. Color corresponds to the ground truth.

We thank the reviewers for the time. We are really glad that the reviewers have found that the paper provides a novel1

idea, is timely, is well written and motivated, and has extensive results.2

Reviewer #1 Results for UMAP. Indeed, the objective function of UMAP is similar to t-SNE and can be written as3

EUMAP(X) =
∑

i,j(log(1 + a ‖xi − xj‖2b)) +
∑

i,j log(1− (1 + a ‖xi − xj‖2b)−1). (1)

Similarly to other methods, this function also has the property of a single global minimum along a new dimension Z that4

could be found with a few iterations of Newton’s method. We will make sure to update the paper with this information.5

Robustness. We certainly hope that our approach would reduce the amount of “tsne engineering”. We were hesitant6

to include any claims of robustness, since after all we are dealing with highly non-convex obj. fun. with many local7

minima. One would only hope to find a global solution. Our intuition does suggest that all of the local minima are8

produced by some points being pressured, however we were not yet able to prove it. In fig. 7 of the main paper, one can9

see that the variance of the final obj. fun. values of PP is smaller than the one from SD, however it is not exactly zero.10

More aux dimensions. Mathematically, nothing prevents us from computing pressure points recursively one after11

another, up until all the points become non-pressured. Practically however, we would have to optimize the embedding12

separately for each dimension, which is costly. Our goal was to create a practical algorithm that could improve the13

results of existing methods, thus we have settled on increasing the dimensionality only by one.14

Reviewer #4 Comparison to other methods. We do not propose a novel dimensionality reduction technique, but15

rather give insights and offer a novel optimization to the existing methods. Thus, the baseline should be given by the16

state-of-the-art optimization method (Spectral Direction), comparison to which we provide.17

Results for Figure 6. We highlighted categories that differ the most from one embedding to another according to the18

Procrustes alignment error. The embedding for all these categories got improved (theoretically they could have gotten19

worse, but they did not). This is an important point and we will clarity it better in the paper.20

Global minimum. The obj. fun. of the embedding methods is highly non-convex and finding a global minimum exactly21

is a very hard problem (see note on Robustness above). In fig. 5 we show the best possible results that we were able to22

get with a very careful and slow optimization. PP was able to get to a similar solution much faster.23

Using higher-dimensional embeddings. The number of dimensions are often given as a hard constraint by the user. For24

example, one of the most typical application for the dimensionality reduction methods is the data visualization where25

the embedding dimensionality has to be equal two or three. For these cases, the goal is to find (potentially very lossy)26

embedding that would best represent the structure of the data. Finding the latent dimensionality is out of the scope of27

this paper (see also More aux dimensions above).28

Interpretability. We discussed a typical scenario of the way pressured points arise in fig. 2 of the main paper and in29

the beginning of section 3. In addition, in fig. 3 we provided some examples of the pressure points for some synthetic30

dataset. As per reviewer suggestion, in fig. 1 above we include some additional examples of pressure points on synthetic31

data. Notice that the points become pressured when they are far from ground truth and are located “on top” of other32

points. In all the cases shown (except for the swiss roll with a hole), the original method (SNE) got stuck in a local33

minima. Our method was able to get out of it and achieve results that are almost identical to the ground truth.34


