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We thank all the reviewers for their valuable comments. We have fixed the typos pointed out by the reviewers. Below4

are the responses to each reviewer.5

To Reviewer 16

Q1: Is the framework limited only to linear models? Our framework could be applied to more general model7

families in view of the following two perspectives. By the formulation W = LS, our framework provides a latent8

representation of the task weights W . It could be naturally extended to more complicated models such as DNNs via9

modifying the latent expression L. From the generative point-of-view, our framework could also be extended to cover10

more complicated distribution families via changing g1(·) ,g2(·) and g3(·).11

Q2: The convergence property and the convergence rate of the algorithm? What if only a local solution is12

found? 1) Under mild assumptions, we can say that the proposed algorithm enjoys the global convergence property13

defined for non-convex problems, where both the objective sequence and the parameter sequence converge to a critical14

point. Moreover the convergence rate should be O( 1
T ), which is sublinear. 2) For non-convex problems, global15

convergence to a critical point is the best we can do in a general sense. The global minimum could be found only16

when the initial point is located in a local convex landscape covering the optimal solution. Nonetheless, according to17

Thm.3, the generalization ability will be promising if the loss is small (not necessarily only the optimal value) and the18

hypothesis space is properly chosen. In this sense, a local critical point would be a good candidate solution. This has19

also been suggested by our experimental results.20

Q3: Are the constraints in the Obj included in the class H(L,S, S̃,U)? The constraints are included in the21

hypothesis space. We will include them in the new version.22

Q4: The proof of Thm.3? The proof follows naturally from Lem.3 and Thm. 13 in Ref.[23] mentioned in the main23

paper. There are only two key differences. We assume that l(y, ·) : ŷ 7→ [0,M ] instead of [0, 1]. That is why we use ∆
M24

in our case. Moreover, we assume that ˘̀(·) = l(y, ·)/M is φ-Lipschitz continuous, instead of 1-Lipschitz continuous.25

That is why the first two terms (which gives an upper bound for the Gaussian Average of ˘̀◦
(
H(L,S, S̃,U)

)
) on the26

right hand side are multiplied by φ. We will provide a detailed proof in the new version.27

Q5: ξ3 does not appear in Thm.3, how does it benefit the hypothesis space? ξ3 benefits the hypothesis space in the28

following sense. According to Thm.4, we see that decreasing ξ3 reduces the sensitivity of numerical perturbation on the29

principle components of S. More importantly, Thm.5 shows that shrinking ξ3 results in a better recovery of the desired30

structure and helps to overcome the negative transfer issue. From the generalization perspective, the expected structure31

is sparse in most cases, this leads to an implicit control of the VC dimension of the space, which suggests that ξ3 also32

contributes to the generalization ability.33

To Reviewer 234

Q1: For S̃ subroutine, why adopt the dual problem? More discussion on the barycenter projection mapping. 1)35

The dual problem could be solved much more efficiently than the primal. The dual problem only contains O(k + T )36

parameters while the primal requires O(kT ) parameters. 2) Since S̃ is the solution of the regularized OT problem, we37

have S̃ij = P(l = i,o = j). Then El|o=i(L) = LS̃(i)

T . In this sense , LS̃(i)

T represents the output task as a barycenter38

in the latent task embedding space, since LS̃(i)

T = argminz El|o=i(d(L(i), z)).39

Q2: The phrasing in Thm.2. We will correct the phrasing issue as you suggested.40

To Reviewer 341

Q1: Discussion on Theorem 3. Thm.3 states that if the magnitude of COV (X) is small, the difference between the42

population version of the task-averaged risk and the empirical risk ∆ tends to zero asymptotically when n → +∞.43

Here COV (X) captures the correlation of the data points of all the samples. Please see the Reference [23] in the main44

paper for more details.45

Q2: Error bar in Fig.2. The error bar in Fig.2 represents the standard deviation over all repetitions.46

Q3: Real-world dataset should be mentioned at the main paper. We will add a brief introduction of the real-world47

dataset in a new version.48
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