- We thank all the reviewers for the valuable comments and suggestions.
- To Reviewer 1
- #1. Regression experiments on UCI regression datasets.
- We further evaluate our model on five UCI regression datasets and show the results in Table 1. We randomly sample
- 90% of each dataset for training and leave the rest for testing. We run 20 experiments for each setup with fixed random
- seeds and report the averaged error rate. Feature normalization is applied in the experiments. The model is a simple
- MLP with one hidden layer of 50 units. We set the batch size to 50, the training epoch to 200, the learning rate to 1e-4,
- the default L^2 to 0.003 and the initial inverse temperature τ to 300. For SGHMC-EM and SGHMC-SA, we apply the
- SSGL prior on the BNN weights (excluding biases) and fix $a, \nu, \lambda = 1, v_1, \sigma = 10$ and $\delta = 0.5$. We select b from
- $\{10, 100\}, v_0$ from $\{0.001, 0.01, 0.1\}$. As shown in Table 1, SGHMC-SA outperforms all baselines. Nevertheless, 10 without smooth adaptive update, SGHMC-EM mostly performs worse than SGHMC. While with simulated annealing
- 11
- where $\tau^{(k)} = 300 \times r^k$, we observe further improved performance in most of the cases with the optimal rate r selected 12
- from {1.01, 1.015, 1.02}. We plan to include the distributional distance metrics and other results in the future revision. 13
- To Reviewer 2
- # 1. Writing suggestions.
- We appreciate the suggestions on writing and are to fix them in the future revision. 16
- # 2. Problem statement and solution. 17
- This paper provides a systematic approach for conducting sparse deep learning with two innovations: (i) We propose to 18
- use the spike-and-slab prior to shrink and cluster the connection weights to two clusters, which facilitates the followed 19
- weight pruning procedure; (ii) We propose an adaptive SGMCMC algorithm to automatically tune the hyper-parameters 20
- of the spike-and-slab prior and prove the convergence of the SGMCMC algorithm rigorously. The adaptive SGMCMC 21
- algorithm is itself of interest, which can be used in many "big data" applications, for example, estimating parameters 22
- for a state-space model when the states are simulated using a SGMCMC algorithm. 23
- #3. Over-parameterization and how realistic are these assumptions. 24
- We acknowledge over-parameterization may fit some real applications better under certain scenarios. Our assumptions 25
- are quite standard in the adaptive sampling literatures and we have already made efforts to loose the assumptions, such 26
- as Lemma 1 in the appendix. We leave the extension on weaker assumptions in the future. 27
- To Reviewer 3
- # 1. Use spike-and-slab to select the structure. 29
- Thanks for the constructive comments. We include scalar-fashion pruning to strengthen the predictive power as Resnet 30
- is a complicated model. We run additional experiments on UCI datasets with standard BNNs, and observe iterative 31
- pruning based on suitable probability thresholds can obtain good performance. E.g., on the Wine dataset, when pruned 32
- with ρ lower than 0.3, the model ends up with 31% sparsity in the hidden layer and 20% sparsity in the output layer, 33
- while RMSE drops from 0.632 to 0.629. We would like to include more results and discuss the use of the spike-and-slab
- prior in the style of group-Lasso such that a whole pathway will be retained or pruned in the future revision. 35
- # 2. Discussions on larger neural networks. 36
- Extension of the proposed method to larger networks is straightforward. However, as implicitly assumed in our 37
- theory, the convergence of the SGMCMC algorithm is essential. For larger networks, to achieve this convergence, 38
- longer training time might be needed. Existing techniques, such as gradient noise control and temperature tuning, for 39
- accelerating SGMCMC simulations should also be helpful to this proposed method.

Dataset	Boston	Yacht	Energy	Wine	Concrete
Hyperparameters	100/0.01/1.015	10/0.1/1.015	10/0.001/1.01	10/0.001/1.015	10/0.01/1.015
SGHMC	2.840±0.120	0.764 ± 0.029	1.466 ± 0.058	0.654 ± 0.014	5.668±0.073
A-SGHMC	2.887±0.128	0.726 ± 0.042	1.354 ± 0.044	0.632 ± 0.009	5.644±0.084
SGHMC-EM	2.872±0.125	0.748±0.048	1.412±0.028	0.770±0.011	5.632±0.057
A-SGHMC-EM	2.858±0.120	0.736±0.036	1.402±0.027	0.638±0.008	5.474±0.096
SGHMC-SA	2.838±0.115	0.746 ± 0.037	1.366±0.034	$0.632 {\pm} 0.010 \\ 0.628 {\pm} 0.008$	5.372 ± 0.071
A-SGHMC-SA	2.780±0.108	0.716 ± 0.036	1.270±0.029		5.438±0.079

Table 1: Average testing performance and standard deviation of RMSE (Root Mean Square Error), with b in the Beta distribution, v_0 in the SSGL prior, and r in the simulated annealing (Hyperparameters $b/v_0/r$).