
All Reviewers: Thank you for the review. A concern shared among reviewers was the focus on deterministic dynamics1

and sparse reward. This simplification was only used for the theoretical analysis. We can extend our result to the2

stochastic case, and we present an empirical validation of our method on stochastic tasks.3

While we cannot include a full proof for the stochastic case, a proof sketch follows. We use the term feasible to denote4

(s, a) tuples from which π∗ has a non-zero chance of receiving positive reward. Let c(s, a) be the probability that5

stochastic dynamics bring a feasible (s, a) to a catastrophic state, and let c = maxs,a c(s, a). This c adds to existing6

per-timestep error εt. This gives 1−R(π) ≤
∑T

t=1(εt+c)
∏t−1

i=1(1−(εi+c)) ≤ T (ε+c), givingR(π) ≥ 1−T (ε+c).7

When πb succeeds, we still get positive labels for each (s, a) visited, so labels in the off-policy dataset are unchanged8

and OPC can be estimated the same way. Stochastic dynamics only influence the lower bound on return.9

Second, we empirically find that OPC performed well on a real-world robotic grasping task, which is necessarily10

stochastic because the real world is stochastic. However, to further support this, we ran new stochastic dynamics11

experiments. We modify the Tree environment to execute a random action instead of the policy’s action with probability12

ε. We modify Pong to use sticky actions, a standard protocol for stochastic dynamics in Atari games introduced by13

Machado et al., 2017. With small probability, the environment repeats the previous action instead of the policy’s action.14

Everything else is unchanged. In more stochastic environments, all metrics drop in performance since Q(s, a) has less15

control over return, but OPC and SoftOPC consistently correlate better than the baselines.16

Stochastic Tree 1-Success Leaf Pong Sticky Actions
ε = 0.2 ε = 0.4 ε = 0.6 ε = 0.8 Sticky 10% Sticky 25%
R2 ξ R2 ξ R2 ξ R2 ξ R2 ξ R2 ξ

TD Err 0.01 -0.11 0.01 -0.07 0.00 -0.05 0.00 -0.05 0.05 -0.16 0.07 -0.15∑
γtAπ 0.00 0.06 0.00 0.01 0.01 -0.07 0.00 -0.02 0.04 -0.29 0.01 -0.22

MCC Err 0.09 -0.31 0.07 -0.27 0.01 -0.06 0.01 -0.11 0.02 -0.32 0.00 -0.18
OPC 0.18 0.46 0.13 0.38 0.01 0.08 0.03 0.19 0.48 0.73 0.33 0.66
SoftOPC 0.19 0.48 0.14 0.39 0.03 0.18 0.04 0.20 0.33 0.67 0.16 0.58

17

Third, regarding sparse rewards. We can train with dense rewards at train time, as long as sparse binary rewards18

are used at evaluation time. This lets us support success vs failure tasks where reward shaping is added to speed up19

learning. We can also extend our analysis to arbitrary rewards, by reducing all MDPs to non-negative sparse reward20

MDPs, observing that E [X] =
∫∞
0
P (X ≥ x) dx when X is non-negative, and estimating each P (X ≥ x) with21

PU-learning. We will attempt to complete this analysis for the final.22

R1: We provided source code for OPC in the Tree env, but can add pseudocode to the paper as well.23

R2: Thank you for the comments on novelty. We can work on clarifying how PU-learning connects to OPE, as this24

is key to understanding our result. For the distribution mismatch assumption, in Appendix F we compared SoftOPC25

performance in Sim Grasping and Real Grasping with different behavior policy datasets. In Real Grasping, correlation26

was still strong when the behavior policy success rate was 28%, 40%, or 51%. In Sim Grasping, correlation was still27

strong when the behavior policy success rate was 1% or 60%. We do find that OPC scores changed based on the28

behavior policy, as expected, but as long as OPC scores are only compared using the same behavior policy dataset, the29

relative rank of scores is mostly consistent across different datasets.30

We also made sure to test how well OPC evaluates agents of widely varying performance, since those agents will have31

very different state-visitation frequencies. In both Pong and Grasping, agents ranged from about 10% success to 90%32

success. OPC was able to predict returns for all such agents with good correlation. As noted, we do not statistically33

bound error from distributional mismatch like prior OPE work, but we do aim to empirically show robustness to34

distribution mismatch. For data efficiency, we have found that about 100 episodes is sufficient to estimate OPC well.35

R3: The γ = 1 restriction is an eval-time assumption to ensure total episode return is either 0 or 1. We use γ < 1 at36

train time and γ = 1 for return at eval time.37

Your description for how correlations are computed is correct. To minimize risk of overfitting results to specific learning38

algorithms or Q-functions, we made sure to train many Q(s, a) with many different learning algorithms. Q-functions39

are sampled randomly (in Tree), trained with DQN or Double DQN (in Pong), with offline batch RL or on-policy RL40

(in Pong and Grasping), or with different sim-to-real learning methods (in Real Grasping). In total, we used over 1541

different Q-learning algorithms and hyperparameter settings. The OPC scores for models trained with each algorithm42

were directly compared against each other. We found OPC to be predictive of return even in this setting, giving us43

confidence that OPC is robust to the learning algorithm used. For reproduction, we list the exact algorithms used in44

Appendix E, and include Tree environment source code in the supplement.45

We believe baselines perform poorly because they measure how well Q(s, a) fits the data, and the policy46

π(s) = argmaxaQ(s, a) can have high return even when Q(s, a) does not fit the data well. We refer to Figure47

1a and Section 5 for a more detailed explanation.48


