
To R #1 and R #2 for dual submission concerns: Although both papers are among the first to explore Transformer1

in time series forecasting and achieve SOTA results, these two papers investigate different problems of time series2

with Transformer (long-term dependencies & memory V.S. abrupt changes). ¶ As mentioned by R #3, this paper3

conducts experiments on both synthetic and real-world datasets to demonstrate the superior of Transformer to LSTM4

on forecasting time series with long-term dependencies, which submission 6113 (S6113) does not mention. · This5

paper pays much attention to memory issues in Transformer and develops LogSparse Transformer to break its notorious6

memory bottleneck from O(L2) to O(L(log2 L)
2) with theoretical justification, which S6113 also does not deal with.7

¸ S6113 focuses on how to enable fast responses to abrupt changes in time series, which this paper does not discuss.8

As for causal convolution, both papers have their own motivations (robustness V.S. quick response) to use it and utilize9

different solutions to achieve their corresponding goals. ¶ Motivation: This paper uses it to generate more local10

context-aware queries and keys in EVERY layer so that they can be matched by referring to local information, enhancing11

the robustness of Transformer. In contrast, S6113 deploys it only in First layer to equip the model with capability to12

adapt to abrupt changes quickly. · Solutions: In this paper, queries and keys are produced by Q = Convk(Y )13

and K = Convk(Y ) in every layer to enhance the robustness of Transformer while S6113 only extracts features14

from RAW DATA for abrupt changes by F = Convk(Z) +Conv1(Z) in the first layer and then produces them by15

Q = WKF and K = WV F as in the standard Transformer.16

To R #1: ¶ Empirical contribution & Bridging fields: Time series forecasting has been extensively studied17

in the past few decades and RNNs have been the new norms in modern large scale forecasting tasks [3] and [6]. However,18

we figure out their long-term modeling issues through carefully designed experiments and only use simple modified19

Transformer networks to outperform existing works. As elaborated by R #3, these results bring fresh air to time series20

forecasting and demonstrate the great potential of Transformer, which is our main contribution. · Dataset overlap:21

The only overlapping datasets with S6113 are electricity-c and traffic-c. They are publicly available and22

extensively used in [3], [6], [7], [9] and [17]. In addition, for comparison with [6], whose source code is not available23

after contacting its authors, we need to run experiments on them. Moreover, this paper also includes experiments on24

five other non-overlapping datasets. ¸ Local and Restart attention: They are already used in our experiments25

as elaborated in Sec. 5.2 Sparse attention. We plan to add ablation study to illustrate this in the new version. ¹ Sample26

plot: We will add some plots to help readers see the challenges and how well the model can capture them.27

To R #2: We are sorry that we have to simplify many details due to space limitations and place them in the Appendix. ¶28

Text space: We demonstrate simulated data in details since it is used to quantitatively prove the superior of Transformer29

to LSTM in capturing long-term dependencies, a key component of our story. We will try to find a better way to present30

this part clearly and concisely. · Rolling window: It is used in [3], [6] and [17], our main baselines. Taking rolling-day31

predication of 7 days as an example, prediction horizon is one day and forecasts start time is shifted by one day 7 times32

after evaluating the prediction for the current day [6]. ¸ Loss function, train/validation/test split procedure, hardware,33

training procedures, optimizer, evaluation, hyperparameters, and other details are elaborated in Appendix A.2 and34

A.3. Note that loss function, split procedure and some other details are the same as [3] for fair comparisons. Test set35

(interval) is chosen by [3] and [6], which won’t be preferable to our model, and will never be accessed by the model36

during training. ¹ For TRMF, we change lag_set according to the periods of our data as indicated in [17] and note37

that the results we report are much better than those in [3] and [6]. For DeepAR, we use results in [6] if it reports,38

otherwise fine tune its hidden size and learning rate, and report the best performance according to the validation set. For39

kernel size, we try {1,2,3,6,9} and report their best performance according to validation set. Thanks to the potential of40

Transformer, even though we almost didn’t tune any hyperparameters, e.g. learning rate, layers, and hidden size, it can41

still achieve better results than SOTA.42

To R #3: ¶ Positional encoding: We use learnable position embedding. · Covariate: Following [3], we43

use all or part of year, month, day_of_week, hour, minute, absolute_position and time_series_ID according44

to the granularities of datasets. Each of them except time_series_ID has only one dimension and is normalized45

to have zero mean and unit variance (if applicable). For time_series_ID, it has the same dimension as position46

embedding through ID_embedding matrix so that they can be summed up (with broadcasting). The summation is47

then concatnated with aforementioned other covariates as the input of 1st layer in Transformer. We will add a table48

in Appendix to elaborate more details for each dataset in the new version. ¸ Mismatch: Yes, they used different49

kernel sizes and we will clarify this in the new version. ¹ Window size: For electricity-c and traffic-c, their50

window sizes are 192 = 168 (one week) + 24 (one day). The full history is split into short windows for efficient training51

(for example, directly feeding hourly data with one year history into LSTM or Transformer is impossible). This is a52

follow-up of [3]. The window selection procedures and other details are elaborated in Appendix A.2. During evaluation,53

we feed the last one week data before test interval into the model and do prediction. º Questions about Table 2:54

Its results are from models trained with full attention as described in Sec. 5.2 Convolutional self attention. Therefore,55

with k = 1, it is the original Transformer. » Source code: We plan to release our source code if it is accepted to help56

the community testify ideas quickly.57


