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(R1) GRU with pre-trained embeddings and BERT. We supplement extra experiments using GRU with pre-trained2

GloVe embeddings and BERT in Table A, as an extension to the Table 4 in the paper. Pre-trained embeddings from large3

language corpus indeed help baselines better predict the synonym relation between unseen concepts, but our VCML4

still outperforms them. We also observed that pretrained text embeddings do not improve the GRU baseline on the5

instance-of tests, whose weights are pretrained by language modeling on training questions.6

Table A: Visual grounding helps predict metaconcepts between unseen concept pairs (evaluated in metaconcept QA accuracy).

CLEVR Q. Type GRU GRU (GloVe) BERT VCML

Synonym 50.0 55.1 56.6 80.7 86.3
InstanceOf 25.0 58.9 42.5 44.6 72.2

GQA Q. Type GRU GRU (GloVe) BERT VCML

Synonym 50.0 53.4 71.5 76.0 94.5
InstanceOf 12.5 26.3 14.6 14.9 19.9

(R1, R3) The ‘instance-of’ metaconcept in de-biasing (Sec. 4.3.2, Table 3). To verify that the instance-of meta-7

concept helps de-biasing, we perform an ablation study on VCML with and without instance-of. On CLEVR, VCML8

performs better with the instance-of metaconcept (55.6% vs. 43.3%). Meanwhile, we speculate that models on GQA9

de-biasing perform similarly since GQA concept categories are not well reflected in vision, especially for categories10

defined by functionality instead of appearance, such as vehicles. To evaluate VCML on interpreting metaconcepts better11

associated with visual appearance in natural images, we have supplemented results on CUB∗ (see below L26–L31).12

(R1) Instance-of metaconcept generalization in Table 4. We agree with the review on that linguistic information13

helps more on the instance-of metaconcept in GQA, and the supplementary results in Table A also support this. Since14

VCML learns concept embeddings completely from visual data, it performs worse than the linguistic baselines.15

(R1) Zero-shot compositional visual reasoning. Thanks for the suggestion. In this work we use manually generated16

datasets for two reasons. First, they enable controlled and diverse experiments such as de-biasing. Second, the extra17

metaconcept questions are essential: the de-biasing generalization will be otherwise ill-formed.18

(R1) Technical details. The word embeddings in GRU-CNN is pretrained on the question set, same as in GRU. The19

semantic parsers used by NS-CL and our VCML are identical, both trained on question-program pairs. The fact that20

VCML outperforms the metaconcept-agnostic NS-CL suggests the importance of metaconcept learning.21

(R2) Unsupervised discovery of metaconcepts. We agree that the unsupervised discovery of metaconcepts is a22

promising direction†. The main contribution of this paper is to incorporate metaconcepts into visual concept learning,23

in the form of supplementary question-answer pairs. The extra information enables learning from less and even biased24

data, which is ill-formed if no extra supervision (e.g., human-designed metaconcept-related questions) is present.25

Table B: Metaconcept
generalization evaluation
of hypernym on CUB.

Model Acc. (%)

Q. Type 50.0
GRU (Lang.) 74.3
BERT 73.1
GRU-CNN 76.7
NS-CL 54.3
VCML 85.5

(R2, R3) Generalizing to new concepts and metaconcepts. We also apply VCML on the26

CUB dataset∗ to learn the hypernym metaconcept from visual data. Data are generated from27

the biological taxonomy of birds. We train different models on a partial set of the taxonomy,28

by providing the hypernym relationship of ∼74K pairs between 273 concepts, and evaluate29

them on ∼9K pairs between 93 concepts in the held-out set. Shown in Table B, our model30

outperforms both visual and linguistic baselines, which supports the generality of our VCML.31

(R3) Originality of metaconcept learning. This paper introduces a new approach to si-32

multaneous learning of visual concepts and metaconcepts. Moreover, its applications such33

as de-biasing with metaconcepts have never been addressed before. Existing research on34

metaconcepts have been mostly restricted to linguistic domains. Two related topics are visual35

compositional learning and knowledge graph completion, both discussed in Section 2.36

(R3) Generality of metaconcept operators. Our design of metaconcept operators is inspired by TransE‡, a frame-37

work for linguistic knowledge graph embeddings. It is a general operator for metaconcepts/relations between concepts.38

(R3) Connection to Platanios et al. Thanks for suggesting the related work, which we will cite and discuss. In39

VCML, the projection embedding transforms the object embedding into a subspace, in which a cosine similarity is40

then computed to classify the object. This differs from the projection network of Platanios et al. which transforms a41

language embedding into a neural network parameter for encoding input sentences.42

Table C: Evaluation of the learned
concept embeddings on visual rea-
soning (in QA accuracy) and referen-
tial expression interpretation (in Re-
call@1).

#Train w/. w/o.

Visual QA 10K 74.8 73.6
1K 65.7 61.0

Ref. Expr. 10K 71.2 70.2
1K 55.0 51.2

(R3) Application of concept embeddings to downstream tasks. We supple-43

ment extra results on the CLEVR visual reasoning challenge (Visual QA) and a44

referential expression task. The task of referential expression is to select out a45

specific object from a scene given a description (e.g., the red cube). We compare46

VCML with and without metaconcept information using the QA accuracy for visual47

reasoning and Recall@1 for referential expressions. Table C suggests that the meta-48

concept information significantly improves visual concept learning in low resource49

settings, using only 10K or even 1K visually grounded questions.50

∗Wah et al. The Caltech-UCSD Birds-200-2011 Dataset. TechReport, Caltech, 2011.
†Kemp and Tenenbaum. The Discovery of Structural Form. PNAS 2008
‡Bordes et al. Translating Embeddings for Modeling Multi-Relational Data. NeurIPS 2013


