
Reviewer 1 Detailed comments: Figure 3 is a very nice visualisation; I hadn’t thought of plotting the corruption to the1

objective landscape under model quantisation before....This seems to out-perform some of the recent mixed-precision2

results as well; you may want to directly state this in one of the comparison tables3

Author response: We thank the reviewer for the comments. After our submission, we noted a new 8-bit mixed precision4

work showing up [arxiv.org/abs/1905.12334] using FP152 accumulated in FP32 and we’ll add that to our comparison.5

Detailed comments: I’d like to see time comparisons for training and inference6

+Improvements:comparison in training times to standard FP32 + inference times (although I appreciate that7

GPUs/TPUs don’t support these representations so this would require implementation on FPGAs which would be a8

major ask)9

Author response: The speed-up from FP32 to FP8 strongly depends on the chip architecture and any additional10

compiler and software optimizations. Comparisons are in general quite tricky—especially since architecture can be11

optimized around a different precision point. In our hardware (ASIC) experiments, we’ve seen a ∼ ×2−×2.5 boost12

in peak performance moving from FP16 to FP8. While our hardware does not target for FP32, we refer to a ×8 peak13

performance boost from FP32 to FP16 from the Nvidia Tensorcore, leading to an estimated ×16 improvement from14

FP32 to FP8. Intel FPGA has shown ×10 boost from FP32 to FP8 in peak throughput[Gordon Chiu et al. ISPD’18].15

Detailed comments: there should be better baseline comparisons (although: this method seems to match normal16

training, so there’s very little margin for it to be out-performed. The comparisons should be used to emphasize that17

more complex methods actually end up under-performing the proposed method)18

+Improvement:baselines going beyond the 1-5-2 format19

Author response: We agree with the reviewer that our method is intended to match normal training. Complex methods20

may require changes from FP32 models and training/inference scripts, e.g., introducing a quantization-friendly normal-21

ization. Such a wide design space is beyond the scope of this paper, since it could impose extra burdens on users to22

modify/calibrate their models, hyperparameters and optimizers. Our FP8 training/inference scheme requires minimal23

effort from the users as no changes to the network architecture, data pre-processing, or hyperparameters are needed.24

Reviewer 2 Improvements: It would be helpful to clarify data formats of each step in Table 2.25

It would be helpful to clarify that the weight update is applied to 1/N of weights in Table 3.26

Author response: We thank the reviewer for the comments. Table 2 and 3 will be updated.27

Reviewer 3 Detailed comments:... but how would a framework implement this, practically? For example, maybe I28

missed it, but I don’t see how you convert between 1-4-3 and 1-5-2 formats when you prepare for back prop if we were29

to productize this. Do the frameworks now have to support 2 more data types? Is the user aware of the data types, even?30

Author response:We thank the reviewer for the comments. From a hardware perspective, mixed 8-bit precision opera-31

tions such as convolution of FP143 weights or activations with FP152 gradients is practical, easy to implement and only32

costs around 5% additional area in the floating point engines (FPU) as stated in line 175. This stems from the fact that33

our FPU design can take hybrid 8-bit inputs—FP143 and FP152 operands and produce products in FP169—requiring34

no conversion between FP143 and FP152 formats. More details on the FPU and hardware architecture will be discussed35

in future hardware conferences. From a framework perspective, we intend to map the forward, backward and update36

computations directly to the right Hybrid-FP8 libraries that we provide along with the hardware (in the graph optimizer37

of the framework)—if the user expresses an interest in enabling FP8 operations at the Python level. We intend to38

automatically choose these formats, but also give users the option to enable/disable these features.39

Detailed comments:How do you get away with FP16 master weights when most others need FP32?40

Author response: The FP32 master copy of weights was needed to avoid the swamping [2,23] problem due to insuffi-41

cient mantissa bits in the Weight Update step. To overcome this, we keep a copy of the quantization error(residual)42

instead of the weight itself in FP169(Table 3). Since the residual is small, its exponent bit will adjust to store information43

in addition to the 9-bit mantissa. In total, we estimated at least 14 mantissa bits of the original weights are preserved44

after combining the FP143 weight and FP169 residual, sufficient to avoid swamping. With this trick, we’re able to get45

away without using the FP32 master copy of weights.46

Detailed Comments:Is the intent to convince hardware vendors to provide this? Or is this for a custom chip? How47

does a reader take advantage of this?48

Author Response: Both are possibilities. We intend to promote 8-bit floating point solutions agnostic to specific hard-49

ware. Readers could use our learning to improve next-gen training and inference hardware platforms. Our theoretical50

learning of quantization also has universal value for the quantization research community.51

Improvements: It seems like the precision for the layers is very carefully chosen empirically. How would a user use52

this in the general case, training a model from scratch, without having to add yet more hyperparameters?53

Author Response:We agree with the reviewer that generally some level of empiricism exists in quantization, which has54

motivated us to cover a wide-range models and complex datasets. This study has revealed that a fixed set of FP8 rules55

could be applied and work universally well across a wide spectrum of models and datasets. Given how well these rules56

work, we don’t anticipate requiring the user to specify any new hyperparameters. From a gradient perspective, we also57

adopted automatic loss-scaling techniques such as APEX to autoscale the dynamic range of gradients—eliminating the58

need to handpick the loss scaling factor.59

