
We really appreciate the reviewers’ time and effort. Thank you for your detailed feedback, thoughtful suggestions and1

valuable recommendations for improving the paper! The reviewers appreciate our strong empirical results and mainly2

asked us to better situate our work. We respond in more detail below, and will take all comments into account in our3

revised version. Additionally, we will shortly release open-source PyTorch implementations of the Hyperbolic Graph4

Convolution Networks (HGCN) model and baselines, along with our detailed reproducible training setup.5

Contributions (R1, R2, R3): We sincerely thank R1 for their careful read and for pointing out ambiguities in our6

paper. First, our paper is an empirical paper. Our goal is to develop practical techniques that can improve the predictive7

performance of recently-developed Graph Convolutional Networks (GCNs) using ideas from hyperbolic geometry.8

Our main result is that HGCN achieves error reduction of up to 63.1% in ROC AUC for link prediction and of up to9

47.5% in F1 score for node classification. Moreover, using standard notions from hyperbolic geometry (Gromov’s10

δ-hyperbolicity), we show that performance is indeed improved when the underlying graph is more “hyperbolic-like”.11

Simply setting GCN variables to be optimized in hyperbolic space does not yield good performance. Our work validates12

that three algorithmic ideas based on hyperbolic geometry are important to obtaining predictive accuracy and good13

runtime performance: trainable curvature, attention-based hyperbolic aggregation, and optimization on the Lorentz14

(hyperboloid) manifold. Our aggregation method relies on two crucial techniques which result in improved performance15

compared to standard aggregation in the tangent space at the origin: (1) aggregation is performed at the local tangent16

space of each point, which better approximates the local hyperbolic geometry; (2) attention scores are computed from17

the origin, which allows HGCN to capture node hierarchies. Furthermore, trainable curvature intuitively helps find the18

right amount of curvature, and potentially alleviates numerical errors that might arise from limited machine precision.19

We show in ablation analysis that these algorithmic contributions result in up to 9.9% absolute gain compared to simple20

GCN in hyperbolic space, an improvement that is larger than what any Euclidean GCN variant achieves.21

Presentation (R1, R2, R3): The results in Section 3 are not considered part of our contribution and we now realize that22

we could make our claims and presentation more crisp. In our updated draft, we will state known facts from hyperbolic23

geometry as propositions rather than corollaries, move standard results to the Appendix as suggested by R2, and more24

carefully cite the related literature, including [1], as suggested by R1. We have also fixed the typo in Equation 15 in the25

Appendix pointed out by R1 and we confirm that we have been using the correct formulation of parallel transport in our26

experiments. Indeed, we had run unit tests verifying that points are mapped to the correct tangent space. We also thank27

R1 for noticing the notation error regarding the hyperbolic radius i
√
K, and we will make this consistent in the revised28

version.29

We thank R2 for the thorough feedback and will clarify our intuitive explanation on the hyperbolic volume growth30

property in line 27, which was meant to illustrate the fact that the volume of balls in Euclidean space grows polynomially31

with respect to the radius, while in hyperbolic space it grows exponentially. We will also replace the hyperboloid32

manifold by the Lorentz manifold in the revised version.33

R3 also asks about the correctness of Equation 10, which maps tangent spaces with different curvatures. In order34

to apply the exponential map at the north pole, we need to make sure that points are located in the corresponding35

tangent space. Fortunately, tangent spaces of the north pole are shared across hyperboloid manifolds that have different36

curvatures, making equation 10 mathematically correct as long as σ(0) = 0, which is true for the ReLU activation. We37

will make this more explicit in the revised version.38

Experiments (R1, R2): R1 rightly points out that the number of hyper-parameters should be the same for fair39

comparison between models. In our experiments, we were very careful about this and we ensured fairness of all40

methods by controlling the number of hyper-parameters and trainable parameters. We will clarify this detail in the41

revision. In particular, curvatures in HGCN are trainable parameters which are therefore not subject to hyper-parameter42

search. Regarding bias and temperature hyper-parameters, we consistently used the Fermi-Dirac decoder to predict link43

probabilities for our method and all baselines (hyperbolic and Euclidean), observing that it performs the same as the44

standard dot product decoder commonly used in Euclidean baselines.45

R2 requests clarification regarding the stability of the hyperboloid model compared to the Poincaré model. In our46

experiments, we used both models observing that they achieve similar performance, but that the hyperboloid model47

offers more stable optimization. This statement is also supported by the fact that the Poincaré distance function is48

numerically unstable due to the denominator term, confirming a previous observation in [2]. We will clarify this point49

in the revision.50

Connection to prior work (R2): We appreciate R2’s suggestion to discuss the connections to Hyperbolic Neural51

Networks (HNN). The main differences are the use of trainable curvatures, the attention-based hyperbolic aggregation52

mechanism, and the use of hyperboloid model. In the revised manuscript, we will further highlight and stress these key53

components and add an experiment using HNN in the hyperboloid model, as suggested by R2.54
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