
We thank the reviewers for their insightful comments, which have helped us improve the paper. We now discuss the1

issues raised by the reviewers and our proposed changes in the final version to resolve these. We omit discussion for2

each suggested change which we will directly implement in the final version.3

Simplified Regret Upper Bound: We define Dmin := miniDi, Dmax := maxiDi, and ∆i,i+1 := (µi − µi+1).4

The regret admits the bound R(1−1/e)
T ≤ O( 1

ε log( 1
ε )) +

32Kg(K−K∗ε )
mini∈[K∗ε ,...,Kg ] ∆i,i+1

log(T ) for any ε > 0. Notably ∆i,i+15

for i = 1 to (K∗
ε − 1) do not appear in the bound. Furthermore, (1− ε)Dmin ≤ K∗

ε ≤ min(K, (1− ε)Dmax + 1) for6

any ε ≥ 0, and Dmin ≤ Kg ≤ min(K,Dmax). Using these bounds we can simplify the regret upper bound.7

Reviewer #4: •We will add the above simplified regret upper bound in the final version of the paper.8

• The problem resolves to semi bandit only if all the delays are equal. When all the delays are less than K (number of9

arms) but distinct we do not have reduction to the semi-bandit case. Nonetheless, we simulate the results for systems10

where maxiDi > K (K = 20 and maxiDi = 40) and observe similar behavior as reported in the current version of11

the paper. We will report the results of the new experiments in the final version of the paper.12

Reviewer #5 • The upper bound for the K∗-set instance (the instance used in the lower bound proof), is O(1)+13
K∗(K−K∗) log(T )

∆ . This follows by choosing any 0 < ε < 1/K∗, using Kg = K∗, and observing that for all14

i ∈ {1, . . . ,K∗} and j ∈ {K∗ + 1, . . . ,K}, ∆ij = ∆.15

• The lower bound is Ω((K −K∗)/∆(K,K∗)) as proved in the paper. Therefore, the dependence on ∆(K,K∗) is16

statistically optimal. However, the lower bound is smaller than the upper bound by a factor of Kg ≤ min(K,Dmax).17

Closing this gap is left as future work.18

• We would like to emphasize here that a key message of our paper is that in the offline setting the simple greedy19

algorithm is (1-1/e) optimal. The goal of the next result is to show that the UCB greedy algorithm has low regret w.r.t20

the greedy algorithm, and the delay information is not required for this result. This does not rule out the possibility of21

improved algorithms that use the delay information, both in the offline and online settings.22

• A gap-independent regret upper bound of 2H(4)/(Dmin)4 +
√

32KgKT log(T ) holds. We will add the result and23

its proof in the supplementary material for the sake of completeness.24

• The use of ε in Prop. 3.4 is purely technical to avoid tie breaking in favor of arm 3. Indeed, if arm 3 has reward 1,25

same as arm 1 and arm 2. The greedy algorithm will play 13231323. . . which gives the optimal reward. However, for26

any ε > 0 greedy plays suboptimally as 12341234. . . Therefore, using ε > 0 is required for the proof. We will make27

the statement of Prop 3.4 rigorous by swapping the order of “there exists” and mentioning ε < 1.28

• Prop 3.5 states suboptimality of an algorithm called the greedy-per-round which plays the available arm with the29

highest “reward/delay”. Here, we have (1 + ε)/(K + 1) > 1/(K + 1), not (1 + ε)/(K + 1) > 1. We will explain the30

greedy-per-round algorithm clearly and explicitly mention the inequality (1 + ε)/(K + 1) > 1/(K + 1).31

• The UCB-greedy algorithm may enter suboptimal cycles but as high reward arms become available, UCB strategy32

ensures they are played with high probability. We will consider the high probability regret upper bound as a future work.33

• For Fig. 1.b, where K∗ = 20, all delays are equal. Here we highlight the constant regret behavior when K∗ = K.34

Reviewer #6 • The hardness result stated in the paper is with respect to the unary representation of the number of35

arms, i.e. time complexity is measured w.r.t. the number of arms, K. Specifically, the number of bits required to36

express the total number of timeslots T can be expressed in log(ΠiDi) bits which is polynomial in the number of37

arms. Now recall that the PINWHEEL scheduling under consideration is dense. Therefore, by construction, for the38

MAXREWARD instance the delays will satisfy
∑K
i=1 1/Di = 1. Now the decision problem for the MAXREWARD39

becomes “OPT = T
∑K
i=1 ai/Di?” Thus the decision problem is expressible in polynomial number of bits. Therefore,40

the reduction is valid. We will add the above explanation in the proof.41

•We thank the reviewer for pointing out this key typographical error. We will replace mint′>=1 with maxt′<=t.42

• Our focus in terms of the offline problem is studying the complexity of the problem both in negative and positive43

direction. Specifically, we prove the hardness of the optimization problem (in number of arms), and in the positive side44

we show that the greedy heuristics under full information is a (1-1/e) approximation. Indeed, as pointed out by the45

reviewer, we leave open the design of an algorithm with approximation larger than (1-1/e) [or proving approximating46

beyond (1-1/e) is hard]. We will highlight this message clearly and specify the future works.47

•We have checked the existing literature very carefully and we believe that the paper introduces and studies a new48

problem. Furthermore, the other reviews also acknowledge the novelty of the problem. Therefore, we request the49

reviewer to re-evaluate the work, as mentioned at the end of the review.50


