- We would like to thank the reviewers for their careful consideration of our paper and their positive feedback. Below we
- 2 address the comments and questions asked by the reviewers.
- 3 **Reviewer #1:** The existence of an efficient proper learner with the same accuracy guarantee is left as an open problem.
- 4 The equivalence between Sloan's "malicious misclassification noise" model and the Massart model is well-known in
- the literature, see, e.g., the introduction of [ABHU15].
- 6 By the definition of the Massart model, the *only* assumption on $\eta(x)$ is that $\eta(x) \le \eta < 1/2$ for all x in the domain.
- 7 The Boolean-valued setting is an important special case that captures the difficulty of the problem of learning halfspaces.
- 8 In particular, Sloan's open problem was explicitly phrased for Boolean disjunctions, a very special case of Boolean
- 9 halfspaces. (This can also be found in Avrim Blum's FOCS 2003 tutorial cited and linked from our paper.)
- We chose to emphasize the "distribution-independent" aspect in the title to clarify the distinction with the previous
- 11 references that learn halfspaces with Massart noise under the uniform distribution on the unit sphere, e.g., [ABHU15].
- 12 We agree that emphasizing which arguments hold generally and which depend on the Massart noise assumption is
- useful for providing intuition and we will revise accordingly. The main place where the Massart noise assumption is
- being used is to show that a vector \mathbf{w} with negative loss $L(\mathbf{w})$ exists (Lemmas 2.3 and A.1). The remaining of the
- arguments and in particular Lemma 2.5 hold more generally, assuming we can find a vector with negative loss.
- Reviewer #3: The complexity of our algorithm is polynomial in the dimension d, the error ϵ , and the bit complexity b of the examples. The reviewer commented on the dependence on b.
- In terms of computational complexity, a polynomial dependence on b exists in all known learning algorithms for
- halfspaces even in the realizable (noiseless) case. In fact, it is well-known that removing such a dependence on b in
- the runtime (even for the realizable case) amounts to developing a *strongly polynomial* time algorithm for general linear
- programs a major open problem in theoretical computer science. (This is stated in lines 66-67 of our paper.)
- 22 In terms of sample complexity, even for the special case of Random Classification Noise all known algorithms —
- including [BFKV97, Coh97] have a polynomial dependence on b as well. The reason is that the outlier removal
- lemma of [BFKV97, DV04a], used as a preprocessing step to create a margin condition, requires this many samples.
- 25 Statement of Open Problem: As we explain in the introduction of our paper, several authors have posed related versions
- of the open problem we study. Sloan's original open problem [Slo88, Slo92] asks whether there is an efficient learning
- algorithm in the Massart noise model for Boolean disjunctions i.e., OR functions on $\{0,1\}^d$ a very special case
- of Boolean halfspaces. (Note that b=d when the domain is the Boolean hypercube.) As pointed out in Avrim Blum's
- FOCS'03 tutorial [Blu03] (lines 48-54 of our paper), and additional personal communication with him, even the weak
- 30 learning version of this problem remained open. Cohen [Coh97] asked whether there is an efficient learning algorithm
- for halfspaces with Massart noise. For the important setting of Boolean halfspaces, i.e., halfspaces on $\{0,1\}^d$ already
- a broad generalization of Sloan's open problem our algorithm has $poly(d/\epsilon)$ sample complexity and runtime.
- a broad generalization of Sloan's open problem our algorithm has $poly(a/\epsilon)$ sample complexity and runtime.
- Estimation in Line 3 of Alg 1: Indeed, checking the termination condition requires estimating the probability which
- can be done via sampling. The number of samples required, i.e., $O(\frac{1}{\epsilon^2}\log(1/\gamma\epsilon))$, is much smaller than the number of
- samples needed in every iteration. We will make a note of that in the revised version of our paper.
- 36 Conversion of SGD guarantees to high probability: Given that our loss function L is bounded in [-1,1], we can obtain
- 37 high probability guarantees of Lemma 2.4 by running SGD multiple times. Here is the simple argument in more
- detail, which we will include in the revision: At a single run, Markov's inequality for the nonnegative random variable
- 39 $L(\bar{\mathbf{w}}) L(\mathbf{w}^*)$ gives:

$$\Pr[L(\bar{\mathbf{w}}) - L(\mathbf{w}^*) \le 2(\mathbf{E}[L(\bar{\mathbf{w}})] - L(\mathbf{w}^*))] \ge 1/2.$$

- From the guarantee that $\mathbf{E}[L(\bar{\mathbf{w}})] \leq L(\mathbf{w}^*) + \epsilon$, this means that with probability at least $\frac{1}{2}$, we can find a vector $\bar{\mathbf{w}}$
- with loss at most $L(\mathbf{w}^*) + 2\epsilon$. Running SGD $O(\log(1/\delta))$ times, there exists such a vector with probability at least
- 42 $1-\delta$. Identifying such a good vector requires estimating the loss within ϵ for all the returned vectors, which requires
- 43 $\tilde{O}(\log(1/\delta)/\epsilon^2)$ samples in total for all vectors, as the loss is bounded in [-1,1]. Thus, the total sample complexity is
- at most $\tilde{O}(\log(1/\delta)/\epsilon^2)$ to get the guarantee with probability at least $1-\delta$.
- 45 Typo at the end of Lemma 2.5: Indeed there is a typo in the last displayed equation, which we will rephrase to make
- 46 the proof cleaner. The integral from \bar{T} to 1 is lower-bounded by $-\lambda \mathbf{Pr}[|\langle \mathbf{w}, \mathbf{x} \rangle| \geq \bar{T}]$ (second to last displayed
- equation) and is also upper-bounded by $L(\mathbf{w})/2$, as the integral from 0 to T is non-negative. This directly yields that
- 48 $\mathbf{Pr}[|\langle \mathbf{w}, \mathbf{x} \rangle| \geq \bar{T}] \geq |L(\mathbf{w})|/2\lambda$, as required to complete the proof.
- 49 Comment 6: We only need that λ is sufficiently close to η to get a meaningful bound. For large values of λ , the
- statement still trivially holds (but is vacuous). Comments 7 and 8: We will rephrase for clarity. Comment 9: Theta will
- 51 be removed.