
We thank the reviewers for their professional work, constructive and thorough criticism, and sensible directions for1

improvement. Altogether, their judgement suggests an acceptance. Below we elaborate a response on the main criticisms2

that we will incorporate on strengthened final version.3

Typos and lack of consistency/clarity:4

• Reviewer 2 pointed to typos in lines 136, 140, 166, lack of clarity in the definition of Zg and lack of clarity in5

the definition of the entropic cost in terms of a generic cost function c(x, y). We fully agree with the criticism6

and will improve the manuscript based on it.7

• Reviewer 2 points to an inconsistency in Figure 1. There, both ε and σ2
g can be used in the legend but we will8

stick to one to keep notation simple. She also suggests introducing Fσ earlier to improve readability, and we9

will do so.10

• Reviewer 2 Reviewer 4 points there is a reference to a bound for EL2 that is not stated elsewhere. There, we11

meant EL and the bound is the one of Proposition 2, as Reviewer 4 guessed.12

• Reviewer 4 points to a missing (b) in page 6. Indeed, (c) should have been (b). We will correct this.13

• Reviewer 4 points it is not clear that (f, g) in Theorem 3 are the optimal potentials. We will make clear14

whenever we write (f, g) we are referring to them.15

Hypothesis: Reviewer 2 suggest being finer in stating which hypothesis are required for each of our improvements.16

Indeed, subgaussianity is needed for the extension to unbounded domains, but the exponential factor improvement is a17

separate contribution that would hold under the same hyphotesis of Genevay et al. (2019). We will make this clear.18

Error in proof of theorem 3: We thank Reviewer 4 for pointing out. We do agree there is an error in the proof, but it19

can be easily fixed. It can be shown that as long as β is σ-finite it is still possible to make sense of the relative entropy20

as if β was a probability measure. This problem has been addressed by e.g. Léonard (2014): essentially, we could21

simply define the relative entropy H(α|β) for unbounded β by the usual formula (line 55), and then what remains to22

verify is that we can still go from the definition in equation (14) to equations (15) and (16). In Léonard (2014) it is23

argued all measure theoretical subtleties can be sorted out. We will fix the prove by comment on this.24

Lack of distributional limits: Reviewer 4 pointed out a weakness of our CLT is that it expresses in terms of the25

centering constants E(S(Pn, Qn)) instead of S(P,Q). We agree it is a weakness, and we don’t know if this can be26

improved, which boils down to answering whether the sample complexity O(1/
√
n) could be indeed o(1/

√
n). We will27

comment on this issue. Nonetheless, in practice it is observed that regardless of the rate in n, dependence on dimension28

can be bad (indeed, exponential, as shown in Goldfeld et al. (2019) for entropy estimation), making the construction of29

confidence intervals hard, even if the CLT holds with S(P,Q) instead of E(S(Pn, Qn)).30

Other entropy estimators: Reviewer 4 points to the recent work of Berrett et al. (2019) showing
√
n consistent31

estimators for a certain class of smooth densities, with available distributional limits. We will cite this relevant work,32

but it isn’t clear Berrett et al. (2019) is superseding our method, as for the CLT of Berrett et al. (2019) to kick in, it is33

required that a certain parameter that the number of neighbors k is greater than a constant that may depends wildly on34

dimension. It is shown (empirically) in Goldfeld et al. (2019) that their estimator (and hence, ours) outperforms the one35

of Berrett et al. (2019) in practice. Finally, it is unclear whether the method of Berrett et al. (2019) can be applied to all36

distributions in our setup; only for compactly supported P the inclusion is straightforward.37

Comments on lower bounds, optimal constant as a function of subgaussian constant, heavier tailed distributions:38

Reviewers 1 and 4 mentioned several improvement directions related to sharper statements of bounds, and extending39

them to heavier tailed distributions. We recognize them as valuable directions, and at least we will comment on these40

issues. However, we don’t compromise for a definite answer of this issues but rather defer them as future work. In41

particular, we will try to provide lower bounds, e.g. arguing as in Goldfeld et al. (2019) and explore other cases beyond42

subgaussianity. Empirical results suggest they are valid in heavier tailed cases as well, but the extension is nontrivial43

because our machinery relies heavily in subgaussianity.44
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