
We thank all reviewers for their time and effort in reviewing our paper.1

– Reviewer 1 –2

We set up experiments on PyTorch with ResNet18 (He et al., 2016) on CIFAR10 (Krizhevsky, 2009). The model3

size is about 44MB. We use 50k training samples and 10k evaluation samples. For direct comparison, no data4

augmentation is used. The batch size is 128. The learning rate starts from 0.1, and is divided by 10 at 150 and5

250 epochs. We set bx = 8, b = 4 for low-precision algorithms. The sparsity budget ϕt = ||αt||1/||αt||∞ and6

θs = 2/(s + 2), ηs = lr/θs (parameters in Acc-AsyLPG). In Figure 1, we plot the training loss and test accuracy7

w.r.t. epochs, and provide the total transmitted bits until the training loss first gets below 0.17. It shows that our8

algorithms achieve similar accuracy and effectively reduce the communication cost compared to benchmarks.

0 100 200 300
Epochs

0.0

0.5

1.0

1.5

2.0

Lo
ss

 fu
nc

tio
n

s v
al

ue

AsyLPG
Sparse-AsyLPG
Acc-AsyLPG
AsyFPG
Acc-AsyFPG
QSVRG

0 100 200 300
Epochs

30

40

50

60

70

80

90

Te
st

 a
cc

ur
ac

y

AsyLPG
Sparse-AsyLPG
Acc-AsyLPG
AsyFPG
Acc-AsyFPG
QSVRG

AsyFPG Acc-AsyFPG QSVRG AsyLPG Sparse-AsyLPG Acc-AsyLPG

1014

of

 b
its

1.00X 1.11X

3.45X

6.03X
8.17X 8.59X

Figure 1: Evaluations on CIFAR10: training loss (1st column), test accuracy (2nd column) and total number of transmitted bits.9

AsyFPG Acc-AsyFPG QSVRG AsyLPG Sparse-AsyLPGAcc-AsyLPG0

100

200

300

400

Ti
m

e
(s

)

Computation Encoding Transmission Decoding

AsyFPG Acc-AsyFPG HALP QSVRG AsyLPG Sparse-AsyLPGAcc-AsyLPG0
10
20
30
40
50
60

Ti
m

e
(s

)

Computation Encoding Transmission Decoding

Figure 2: Decomposition of time con-
sumption. Top: rcv1. Bottom: MNIST.

– Reviewer 2 –10

(Running time) The statistics of running time in Figure 3(b) in our paper11

are obtained by averaging results of 5 runs in order to make the evalua-12

tions accurate. In Figure 2 here, we provide the total running time of lo-13

gistic regression on rcv1 and a 3-layer fully connected neural network on14

MNIST. The experimental settings are the same as Section 5. The statistics15

in both graphs are recorded until the training loss first gets below 0.5. The16

results show that our algorithms can effectively reduce the total running time.17

(Scalability) We present the running time on MNIST using 4, 8, 12 workers in18

Figure 3 here. The experimental settings are the same as Section 5.2. Each bar19

represents the total running time which is decomposed into communication (top,20

light, include transmission, encoding and decoding) and computation (bottom,21

dark), and is recorded until the training loss first gets below 0.1. The results show22

that algorithm speedup increases in the number of workers. More evaluations of23

training ResNet18 (model size 44MB) on CIFAR10 are shown in Figure 1 above.24

We will release our code on GitHub in the final version.25
– Reviewer 3 –26

(Comparison with existing results) (Bernstein et al., 2018) studies bi-direction 1-bit compression between master27

and workers. In their case, the master and workers exchange quantized gradients, whereas in our case, the master28

receives quantized gradients from workers and sends quantized model vectors to them. This difference leads to a very29

different analysis. The key novel components of our work, compared to existing results (including signSGD), include30

the following. (i) We propose the new double quantization scheme (DB). The gradient quantizer, though unbiased,31

is nontrivial to analyze, because it is evaluated on quantized model vectors. Since the function f is nonlinear, the32

stochastic gradients are biased. As a result, our algorithms cannot be analyzed with arguments used in full-precision33

distributed SGD analysis, and require new proofs. (ii) We further integrate sparsification and momentum into DB, and34

establish convergence rates under asynchrony. We will be sure to include more related references in the final version,35

e.g., (Wang et al., 2017), (Jiang & Agrawal, 2018), (Chen et al., 2018) and (Tang et al., 2019).36

AsyFPG Acc-AsyFPG QSVRG AsyLPG Sparse-AsyLPGAcc-AsyLPG0

100

200

300

To
ta

l T
im

e
(s

)

4 workers 8 workers 12 workers

Figure 3: Scalability test on MNIST.

(Quantizer) Note that with our selections of δx, δαt
and δβt

, the unquantized37

coordinates of xD(t), αt, and βt all lie in the convex hull of the corresponding38

domains dom(δ, b). In this case, the quantizer is unbiased. Such a quantizer is39

equivalent to that in QSVRG (Alistarh, 2018; Yu et al., AISTATS, 2019: Section 4.1)40

(also see Lemma 1 in Supplementary for details). Note that we can also adopt other41

biased model quantizer such as clipping, as long as the precision loss satisfies Eq.42

(2) or (4). Similar results can be proven with minor modifications of our analysis. Also note that although a 1-to-N43

broadcast is cheaper than N 1-to-1 unicasts, broadcasting a quantized vector is still much more communication efficient44

than broadcasting a full-precision vector.45

(Scalability) See Fig. 1,2,3 here for more evaluations on scalability and other datasets/models.46

0 2 4 6 8 10 12 14 16 18
Epochs

0.0

2.5

5.0

7.5

Qu
an

tiz
at

io
n

er
ro

r

Figure 4: The accuracy
of model quantizer.

(Accuracy of model quantizer) µ is a hyperparameter to control the precision loss. When µ47

is fixed, we choose bx to satisfy Eq. (2). In Figure 4 here, we set µ = 0.5 and study how the48

accuracy of model quantizer improves with iterations when running AsyLPG on MNIST. We49

see that the quantization error diminishes. Thus, the number of transmitted bits increases as the50

number of iteration grows. Table 1 in manuscript records the total number of bits for reaching the desired accuracy,51

which validates the communication efficiency of our algorithms compared to benchmarks. Moreover, Table 1 evaluates52

the total transmitted bits under different µ for attaining the same accuracy.53

