- We thank the reviewers for their highly useful feedback, which we will incorporate in the revised version. To summarize,
- 2 the main points are:
- Highlight relationship with existing representation formalisms
 - Clarify how the ideas can be extended to practical settings

5 1 Reviewer 1

- 6 Put "Related work" in part 2. We agree we can improve the connection with other formalisms, we will emphasize
- 7 this.

8 2 Reviewer 2

- 9 Isn't the first half of Lemma 1 a well known result? You are right in that the proof makes direct use of existing
- 10 linear programming results. There is a slight difference, however, since Lemma 1 is specifically about the value
- polytope: the domain of the functional is nonconvex, and the proof requires first an extension to its convex hull. The
- 12 statement regarding deterministic policies is also polytope-specific. We will make sure to emphasize what is novel in
- 13 the statement.
- 14 Consider saying why Lemma 1 is useful. The usefulness is the interesting property of the value polytope (which we
- then make use of). We will emphasize this point also.
- 16 Connection to Wasserstein distance and model-based RL. In that space, we know of Farahmand, Barreto, Nikovski
- 17 (2017) and follow-up work. This is an interesting connection, although to the best of our knowledge there is no model
- learning equivalent of the value polytope or adversarial value functions. E.g. we would need a small set of models w.r.t.
- which we want low modelling error. Please let us know in your revised review if there are specific papers that might
- 20 have a closer connection.
- can you clarify why you used model-based algorithms in experiments? Model-free experiments require dealing
- 22 with stochasticity in the results, error bars, etc. and would give a murkier picture of the role of the representation. We
- 23 could learn AVFs using Monte-Carlo samples from the different adversarial policies, and learn these policies through
- 24 sample-based policy gradient, but we feel our setup gets to the point more clearly. We will highlight this.
- 25 The experiments are preliminary / challenges when going to function approximation. To clarify, our experiments
- use tabular information (e.g., V^{π}) to produce function approximation, so we read this comment as "how to learn a
- 27 representation when tabular information is not available".
- 28 The path to a "deep" method is clear to us, but not short. There are a few challenges to overcome: 1) how should we
- 29 represent adversarial policies? 2) what is the effect of non-uniform distributions on the learned representation? this
- effectively changes the norm in Equation 1; 3) what is the effect of changing the sampling distribution for δ ? and 4) we
- would like to make use of Bellman updates to learn AVFs, but these requires a good off-policy learning method. 1–3
- might be answered by considering the auxiliary tasks perspective (Section 3.2). We will add a section discussing these
- 33 points.

34 3 Reviewer 3

- ϕ becomes part of the computation through its gradient. This is a fair point. At first glance the difference in our
- 36 perspectives seems to be about how the optimization process discovers the representation, rather than the space of
- possible representations, but if you are making a more specific distinction please let us know in the revised review.
- 38 Either way, we will make sure to discuss this point.
- Figure 1 (Right) is a cartoon version of a value polytope for a 2-state MDP. The axes are a good suggestion.
- Thank you for catching bugs in the math, we will fix.