Dear reviewers, thank you for a thorough review of our paper. We provide a point-by-point response to each reviewer 1

below. 2

Reviewer 1 3

4 5 6	1.	Using TRIP as a variational distribution is an interesting direction of further research, although we will not be able to apply a reparameterization trick for a TRIP proposal in a way it is used in Gaussian proposals. We will have to use REINFORCE, which may lead to a high gradient variance and, hence, unstable learning.
7	2.	Corrected.
8 9 10	3.	For GAN-GMM and GAN-TRIP, we used baselines to reduce REINFORCE's gradient variance (see Eq. 10). A prior of GAN- $\mathcal{N}(0, I)$ is not trainable and hence does not require a baseline. We will add clarification about using baselines to train GAN-GMM to the paper.
11 12 13	4.	We thank the reviewer for suggesting to use $128 * 10$ components in the GMM baseline. 1000 components stated in the paper is a typo, the actual number of components was indeed 1280, see the source code file train_gans.py from supplementary materials, line 103. We will fix the typo in the paper.
14 15 16	5.	We chose the core size to balance computational complexity and empirical performance (see Table 1 below). For $m_k = 20$ the model converged after around one day of training, while for $m_k = 50$ training takes around a week, since it requires more epochs to converge.

Table 1: Time and memory consumption of operations with prior (per batch). m_k is a core size, latent space dimension d = 100, number of Gaussians per dimension N = 10, batch size b = 128. Other parameters are the same as used in the paper. We performed the experiments on Tesla K80.

m_k	$\mathcal O$ -notation	1	10	20	50	100
LOG-LIKELIHOOD, MS SAMPLING, MS MEMORY, MB	$O(b \cdot d \cdot (m_k^3 + m_k^2 N + N))$ $O(d \cdot (m_k^2 + N))$	$\begin{array}{c} 126 \pm 7 \\ 201 \pm 21 \\ 0.023 \end{array}$	$137 \pm 4 \\ 232 \pm 13 \\ 0.77$	$193 \pm 15 \\ 312 \pm 18 \\ 3.1$	$200 \pm 20 \\ 360 \pm 17 \\ 19.5$	$\begin{array}{c} 308 \pm 12 \\ 882 \pm 15 \\ 78.1 \end{array}$

The reviewer also asked to test the TRIP model for a posterior collapse. For a multimodal prior, a posterior collapse is 17 indeed unlikely, since we cannot approximate a multimodal distribution with a single mode; the only failure mode is 18

when prior collapses to a unimodal distribution along some axis. For our VAE-TRIP model, the number of active units

19 (AU) was 100/100. We will also add an experiment on MNIST and StackedMINST to a camera-ready version. 20

Reviewer 2 21

1. The reviewer suggested benchmarking the models with TRIP, GMM, and Gaussian priors with the same 22 number of parameters. We present the result of this experiment in Table 2 below, supporting the conclusions 23 we got from the original experiment. 24

Table 2: VAEs with different priors and a comparable number of parameters

	$\mathcal{N}(0,1)$	GMM	TRIP	$\mathcal{N}(0, I) ext{-Flow}$	GMM-FLOW	TRIP-FLOW
PARAMETERS (MODEL)	11,4M	11,1M	10,7M	11.3M	10.7M	10.4M
PARAMETERS (PRIOR)	0	0,2M	0,6M	0.3M	0.5M	0.7M
PARAMETERS (TOTAL)	11,4M	11,3M	11,1M	11.5M	11.2M	11.1M
ELBO	-192.6	-190.05	-189.1	-185.3	-186.0	-184.7

Reviewer 3 25

1. The proposed TRIP model has many useful properties such as conditioning on a subset of attributes (Sec. 4)—a 26 property that other priors (including flow-based models) do not have. For a fair comparison, we incorporated 27 TRIP as an initial distribution of a flow-based RealNVP prior and show in Table 2 that such model outperforms 28 a standard RealNVP prior. We will add a section on incorporating neural priors to the updated paper, including 29 VAMP and IAF priors. 30

2. The computational costs of TRIP depend on the number of dimensions d and core size m_k (usually constant for all k). We report asymptotic complexities, time, and memory measurements in Table 1, showing that TRIP 32 is practical for moderate core sizes. 33

31