
Dear reviewers, thank you for a thorough review of our paper. We provide a point-by-point response to each reviewer1

below.2

Reviewer 13

1. Using TRIP as a variational distribution is an interesting direction of further research, although we will not be4

able to apply a reparameterization trick for a TRIP proposal in a way it is used in Gaussian proposals. We will5

have to use REINFORCE, which may lead to a high gradient variance and, hence, unstable learning.6

2. Corrected.7

3. For GAN-GMM and GAN-TRIP, we used baselines to reduce REINFORCE’s gradient variance (see Eq. 10).8

A prior of GAN-N (0, I) is not trainable and hence does not require a baseline. We will add clarification about9

using baselines to train GAN-GMM to the paper.10

4. We thank the reviewer for suggesting to use 128 ∗ 10 components in the GMM baseline. 1000 components11

stated in the paper is a typo, the actual number of components was indeed 1280, see the source code file12

train_gans.py from supplementary materials, line 103. We will fix the typo in the paper.13

5. We chose the core size to balance computational complexity and empirical performance (see Table 1 below).14

For mk = 20 the model converged after around one day of training, while for mk = 50 training takes around15

a week, since it requires more epochs to converge.16

Table 1: Time and memory consumption of operations with prior (per batch). mk is a core size, latent space dimension
d = 100, number of Gaussians per dimension N = 10, batch size b = 128. Other parameters are the same as used in
the paper. We performed the experiments on Tesla K80.

mk O-NOTATION 1 10 20 50 100

LOG-LIKELIHOOD, MS
O(b · d · (m3

k +m2
kN +N))

126 ± 7 137 ± 4 193 ± 15 200 ± 20 308 ± 12
SAMPLING, MS 201 ± 21 232 ± 13 312 ± 18 360 ± 17 882 ± 15
MEMORY, MB O(d · (m2

k +N)) 0.023 0.77 3.1 19.5 78.1

The reviewer also asked to test the TRIP model for a posterior collapse. For a multimodal prior, a posterior collapse is17

indeed unlikely, since we cannot approximate a multimodal distribution with a single mode; the only failure mode is18

when prior collapses to a unimodal distribution along some axis. For our VAE-TRIP model, the number of active units19

(AU) was 100/100. We will also add an experiment on MNIST and StackedMINST to a camera-ready version.20

Reviewer 221

1. The reviewer suggested benchmarking the models with TRIP, GMM, and Gaussian priors with the same22

number of parameters. We present the result of this experiment in Table 2 below, supporting the conclusions23

we got from the original experiment.24

Table 2: VAEs with different priors and a comparable number of parameters

N (0, 1) GMM TRIP N (0, I)-FLOW GMM-FLOW TRIP-FLOW

PARAMETERS (MODEL) 11,4M 11,1M 10,7M 11.3M 10.7M 10.4M
PARAMETERS (PRIOR) 0 0,2M 0,6M 0.3M 0.5M 0.7M
PARAMETERS (TOTAL) 11,4M 11,3M 11,1M 11.5M 11.2M 11.1M
ELBO -192.6 -190.05 -189.1 -185.3 -186.0 -184.7

Reviewer 325

1. The proposed TRIP model has many useful properties such as conditioning on a subset of attributes (Sec. 4)—a26

property that other priors (including flow-based models) do not have. For a fair comparison, we incorporated27

TRIP as an initial distribution of a flow-based RealNVP prior and show in Table 2 that such model outperforms28

a standard RealNVP prior. We will add a section on incorporating neural priors to the updated paper, including29

VAMP and IAF priors.30

2. The computational costs of TRIP depend on the number of dimensions d and core size mk (usually constant31

for all k). We report asymptotic complexities, time, and memory measurements in Table 1, showing that TRIP32

is practical for moderate core sizes.33


