- **Reviewer 1.** We appreciate your invaluable comments and questions. We address your concerns below.
- R1.1 **Huber loss vs.** ℓ^1 -loss. Our choice of Huber loss rather than ℓ^1 -loss is to simplify theoretical analysis. Undoubtedly, ℓ^1 -loss is a more natural sparsity promoting function and performs better than Huber. We will refine our
- statement in the revision to make this fact more clear and transparent. When ℓ^1 -loss is utilized, the experiments tend to
- 4 statement in the revision to make this fact more clear and transparent. When ℓ^* -loss is utilized, the experiments tend to
- suggest that the underlying kernel and signals can be exactly recovered even without LP rounding; see the figure below
- in which rounding is not applied to ℓ^1 -loss. However, on theory side, the subgradient of ℓ^1 -loss is *non-Lipschitz* which
- 7 introduces tremendous difficulty in controlling suprema of random process and perturbation analysis for preconditioning
- 8 for our problem. We leave analyzing ℓ^1 -loss for future research which we will discuss in the final draft.
- 9 R1.2 **Relation to cross-relation methods.** We apologize for omitting this literature (e.g., G. Xu et al. TSP'95, Y.
- Lin et al. NeurIPS'07, K. Lee et al. SIIMS'18), which consider similar problems that we will include in revision. In
- comparison, (i) Lin et al. proposed an ℓ^1 -regularized least-squares method based on convex relaxation. The convex
- method could suffer similar sparsity limitation as [19], and it limits to 2 channels without theoretical guarantees; (ii)
- 13 Lee et al. proposed an eigen approach for FIR signal model. Their provable efficient method considered short signal x_i
- which lives in given random subspaces, thus it cannot directly handle our case with random sparse nonzero support.
- R1.3 Clarification of the set $\mathcal{S}_{\xi}^{i\pm}$. Our original description that the union of $\mathcal{S}_{\xi}^{i\pm}$ gives a full partition of \mathbb{S}^{n-1} is inaccurate. Indeed, we consider these sets because their union excludes all saddle points, but covers a large portion of
- inaccurate. Indeed, we consider these sets because their union excludes all saddle points, but covers a large portion o measure over the sphere for small ξ . For each individual set, we will make the inclusion $\mathbf{q} = \mathbf{e}_i$ clear and well-defined.
- 18 R1.4 Closeness of $\mathbb{R}\mathbb{Q}^{-1}$ and I. We will include the precise approximation error from Lemma H.4 of supplementary.
- 19 R1.5 **Algorithmic implementation details.** Experimentally we use linesearch for both the stepsizes in RGD and LP
- 20 rounding for optimizing all losses. In revision, we will expand Line 230 with more details and release code.
- 21 In revision, we will add a conclusion and address other minor issues without detailed explanation due to space limit.
- Reviewer 2. We sincerely thank you for your appreciation of our work. For reproducible research, we will release well documented code of this work on Github, and correspondingly provide a link in the revised draft.
- well documented code of this work on Github, and correspondingly provide a link in the revised draft.

 R2.1 **Smoothing parameter** μ . Here, the parameter μ in Huber introduces a *tradeoff* between sample complexity and
- recovery accuracy. As shown in Theorem 3.1, the sample complexity p depends *inversely* on μ : larger p is required for smaller μ , and vice versa; on the other hand, Figure 2 (or the revised figure below, as suggested) shows smaller μ produces higher recovery accuracy in Phase 1. We will discuss this around Theorem 3.1 and experiment section.
- Reviewer 3. We really appreciate your constructive criticism and valuable feedbacks, that we address as follows.
- R3.1 **Sample Complexity.** We agree there is a large sample complexity *gap* between our theory and practice. From
- the degree of freedom perspective (e.g., Eric Moulines et al. TSP'95), a constant p is also seemingly enough in our
- case. However, as the problem is highly nonconvex with unknown nonzero supports of x_i s, to have provable efficient
- case. Towever, as the problem is highly nonconvex with minimizer supports of x_i s, to have provide efficient
- methods, we conjecture that paying extra log factors $p \ge \Omega(\text{poly}\log(n))$ is necessary as stated in Line 56, 139 and
- 251, which is empirically confirmed by Figure 4. This is similar to recent provable efficient method on FIR model (K.
- Lee et al. SIIMS'18). On the other hand, we believe our *far from tight* sample complexity $p \ge \Omega(\text{poly}(n))$ is due to the
- looseness in our analysis: (i) loose control of summations of dependent random variables, and (ii) tiny gradient near the
- 36 set boundary for concentration. We will discuss this in revision and leave improvement for future work.
- R3.2 **Clarification of rounding with unknown rotations.** We do *not* need to know **Q** for solving LP rounding. Footnote 9 and Appendix I provide more details of the *actual* problem form we are solving. The reason we stated LP
- Footnote 9 and Appendix I provide more details of the *actual* problem form we are solving. The reason we stated LP rounding in the rotated space as (14) (typo: **u** should be **q** in (14)) is *only* for the convenience of introducing subsequent
- results. Recall the deduction from (4) to (9), we can *reversely* get back the actual form in Footnote 9 by plugging
- $\mathbf{q} = \mathbf{Q}\mathbf{q}'$ into (14) (with an abuse of notations of \mathbf{q} and \mathbf{q}'), where $\overline{\mathbf{r}}$ is the actual solution of optimizing (4) in Phase 1.

Phase 2:

−ℓ¹-loss

Huber-loss, $\mu = 5 \times 10^{\circ}$ Huber-loss, $\mu = 5 \times 10^{\circ}$ Huber-loss, $\mu = 5 \times 10^{\circ}$

Huber-loss, $\mu = 5 \times 10^{-6}$ ℓ^4 -loss

- Therefore, Q is *not* needed. We will make this involved narrative more clear in revision.
- 43 R3.3 Simulation in Figure 2. Following reviewer's suggestion, in the right figure
- 44 we show the convergence in a progressive way for optimizing ℓ^4 and Huber losses,
- with the same setup as in Figure 2. We observe that (i) in Phase 1, the reconstruction
- errors stagnate for both ℓ^4 and Huber losses before rounding is applied, and (ii) in
- Phase 2, the projected subgradient method for LP rounding converges linearly to
- a target solution. For the ℓ^1 -loss, it seems that rounding is *not* necessary. Per our R1.1 to Reviewer 1, analyzing this behavior is the subject of future work.
- R3.4 Other technical issues. We briefly address other minor technical issues as
- follows: (i) Equation (2) is to show intrinsic shift-scaling symmetry, so that we can
- only solve to a shift equivalence; (ii) the DFT matrix **F** is unnormalized, as shown
- on Line 389 of the supplementary; (iii) Figure 1 plots the function values over the sphere, where cooler color denotes smaller values, and vice versa. The target solutions (red dots) stays much closer to global minima for Huber and ℓ^1
- losses than ℓ^4 -loss; (iv) the problem becomes trivial when $\theta \le 1/n$ because $\theta n = 1$ so that \mathbf{x}_i tends to be a δ -function; (v) We will mention the result by Cosse. As it is a convex method following [19], it may suffer similar limitations.
- Due to space limit, for other questions we refer Reviewer 3 to our response to Reviewer 1 (e.g., R1.1, R1.2, and R1.3).