
To Reviewer #1:1

On the efficiency/consistency of the parameter learning procedure. Please kindly see line 43-51.2

How many probability levels used? All experiments use 99 levels of τ in the quantile regression: Ψ=3

{0.01,0.02,...,0.98,0.99} so that the interval (0, 1) is covered sufficiently. One can use a smaller set to reduce the computing4

cost, e.g., Ψ={0.01,0.05,0.1,...,0.9,0.95,0.99}. We find no significant performance difference using either the set of 99 levels5

or the 21 levels because the degree of freedom of the 4-parameter quantile function we use is 4. Both are sufficient.6

The error compounding issue. The fitting of our one-factor model doesn’t rely on variable ordering. Its estimation is7

quite reliable and efficient (line 43-50 has more details). For the lower-triangular model, more data would reduce the8

potential error compounding in yn as n becomes large. We are trying to solve this issue by fine-tuning all parameters9

after the current learning procedure, with an overall objective instead of the step-by-step setting.10

The constant A in Eqn.2 and Eqn.3. We require A be bounded below by a real constant such that Eqn.2 &3 are11

strictly increasing, which ensures Eqn.2 & 3 are indeed quantile functions. The constant A determines the threshold12

starting from which our Q-Q plot starts to curve or say, be notably different from that of a Gaussian distribution.13

Why are u ≥ 1 and v ≥ 1 required in Eqn.3? If u < 1, then ux = (1/u)−x and 1/u > 1 will play the same role as14

v does, which is redundant. The same reason applies to v. We require the Q-Q plot exhibits both up and down tails.15

The ideal number of violations. For the i.i.d. bernoulli distributed violation sequence with parameter τ (e.g., 0.01),16

the ideal number of violations is the number of observations N times τ . In Table 1, N = 2075 or 2407, τ = 0.01.17

Cross-sectional variance explained. Our model is designed to capture tail dependence, which measures joint extreme18

events. They happened very rarely in markets, thus capturing them (fourth-order moment) will contribute little to19

the total variance explained (second-order moment). We have checked that our model does very slightly better than20

traditional one-factor statistical models in variance explained. Table 2 gives similar βi as CAPM, but with left/right tail21

sensitivity uMi and vMi added. The residual γig(zi|ui, vi) is also heavy-tailed and asymmetric (described by ui and vi).22

To Reviewer #2:23

The advantage of Eqn.3 compared to Eqn.2. We replace Eqn.2 by Eqn.3 for two reasons. First, in terms of controlling24

the shape of the left & right tail, the cross term e(u−v)Zτ /A2 in Eqn.2 is redundant and not “clean". The additive form25

of Eqn.3 avoids these undesirable properties. Second, changing from eux to ux reduces the sensitivity of tail heaviness26

to u while still allowing a wide range of tail heaviness. We found the ux form suits the experiments in Table 2 better.27

Does vik, k < j have similar interpretation as vij? Yes. For example, v31 and v32 both contribute to the tail28

dependence between y3 and y2. But from the fitting procedure, v31 mainly determines tail dependence between y3 and29

y1, we believe v32 is the most free parameter that determines tail dependence between y3 and y2. The full relationship30

between tail dependence and parameters is complicated. But in the one-factor model, it is clear and easy to interpret.31

How was Ψ chosen in the experiments? please kindly see line 3-5.32

How to solve Eqn.13? The left side of Eqn.13 is an increasing function of τ∗. We use the bisection method on 10733

samples of (X,Y ) to solve it. The computing cost is acceptable. We will introduce these in the next version.34

Could we also model negative tail dependence? We appreciate the reviewer makes this point. We neglected to discuss35

the negative tail dependence limt→0+ P{X<QX(t),Y >QY (1−t)}/t. Actually, our model does cover this case because it is36

symmetric, i.e., when σij < 0, i > j, what we are modeling is exactly the negative correlation as well as negative tail37

dependence between yi and yj . Now uij and vij are interpreted as the parameters controlling negative tail dependence.38

On the theoretical analysis of our model. We share the same view that theoretical analysis of either the model or39

the estimator is important. We are actively developing it. For the consistency/efficiency matter of parameter learning,40

please kindly see 43-50.41

To Reviewer #3:42

On the consistency/efficiency of the parameter learning procedure. Developing a theory showing these properties43

is not easy, given the complexity of our learning procedure. But at this moment we can address this problem numerically.44

We randomly set the model parameters, simulate some points, and apply the learning procedure on them. The learned45

parameters of our one-factor model are shown in the following table (i is any one in 1, 2, ..., n). We also list the number46

of data points N and the norm of learned parameters minus true ones. We can see the learning for one-factor model
Trial\Parameter αM βM uM vM βi uMi vMi αi γi ui vi N Norm
True Parameters -0.33 0.60 2.08 2.34 -0.71 1.84 1.83 0.88 0.18 2.37 2.12 — 0.00

1 -0.33 0.56 2.36 2.67 -0.64 1.75 2.57 0.82 0.23 1.84 2.26 1000 1.02
2 -0.34 0.60 2.12 2.40 -0.71 1.88 1.85 0.90 0.19 2.35 2.07 10000 0.10
3 -0.33 0.60 2.10 2.36 -0.71 1.85 1.85 0.88 0.19 2.36 2.10 100000 0.04

47
is fairly consistent and efficient as N increases. For our lower-triangular model, the learning is less efficient but still48

consistent enough. The convergence becomes slower and we need more data points to obtain a reliable estimate. This is49

due to the more complex structure and more parameters of the model. For space limit we do not show its results here.50


