
Dear Reviewers of Submission #2112:1

We thank for your reviews and constructive advices for this paper. Here is a response to your proposed issues.2

1. Experimental Setup for Fair Comparison. In the experiment, we compare our method with NETRATE [2] and3

KernelCascade [1] which aim at learning the hidden network among multi-dimensional markers in event sequences. We4

use the similar settings as in [2, 1] in order to guarantee a fair comparison.5

i) Dataset and Preprocessing: the generation of synthetic datasets is followed by [1]. Also, the MemeTracker dataset is6

also used by [2, 1] and we adopt the similar preprocessing (filter out the top 500 sites). Moreover, we consider an extra7

large synthetic dataset and another real-world dataset Weibo in order to test the performance on large-scale system.8

ii) Evaluation Protocols: we follow [2, 1] and use the same metrics–precision, recall and F1-score–to measure the9

accuracy of network reconstruction. For each method, we independently run the experiment five times and report the10

averaged scores to avoid the accidental results.11

iii) Hyperparameter and Environment: for each comparative method, we refer to the hyperparameter settings reported12

in the paper and do some tuning to guarantee the optimal performance of them on each task. Finally, the achieved13

performances of two baselines on MemeTracker are close to what are reported in their paper, and particularly, our14

achieved F1 scores of them are even higher than what they reported. Besides, we implement each method on the same15

hardcore environment (two Nvidia Tesla K80 with 12G memory) in order to guarantee the fairness of scalability test.16

2. Time and Space Complexity. We divide the complexity analysis into feed-forward inference and back-propagation17

training. The bottlenecks of these two parts in LANTERN respectively lie in the random-walk marker sampling and18

learning for marker embedding. For the first bottleneck, we propose an equivalent efficient method that has linear19

complexity for sequence length, so the time and space complexity of sampling one event sequence are both O(T ) where20

T denotes maximum length of sequence. For the second bottleneck, as discussed under Eqn. (2), we fix the probability21

p(mj ∈ Ni) in one epoch and update it when an epoch is finished. With such trick, we only need to update the marker22

embedding for each marker once in an epoch, which requires O(MT ) in total, where M is the number of markers.23

Hence, in one epoch, the time and space complexity can be controlled within O(MT ), which is linear w.r.t marker24

number and sequence length. By contrast, in previous works NETRATE [2] and KernelCascade [1], since they assume25

each edge between two nodes (markers) entails a transmission function and do not sample neighbored nodes, the time26

complexity would be O(M2T +MT 2) and space complexity would be O(M2T ) in one epoch. Thus, our method27

reduces the quadratic complexity to linear one. The scalability test in experiments verify this result.28

3. Hyperparameter Searching. The hyperparameters used in our experiment are searched by coordinate descend. The29

searching spaces for hyperparameters are as follows: learning rate α = [5e− 7, 5e− 6, 5e− 5, 5e− 4, 5e− 3, 5e−30

2, 5e − 1], embedding dimension D = [4, 8, 12, 16, 24], attention head number L = [1, 2, 4, 8], regularization λ =31

[0.1, 0.01, 0.001, 0.0001], discount factor γ = [0.8, 0.9, 0.99, 0.999], time embedding weight η = [0.03, 0.3, 1, 3, 30].32

4. Reinterpretations for Scalability Results. The scalability test results are presented in Fig. 5 in our paper, which33

uses log-scale axis in order to reduce the range variation. To provide a more concrete comparison, we report the34

running time for each method in Table 1. As you can see, when marker number goes to very large, e.g. 104,35

our method could be at least 10 times more efficient than NETRATE and at least 50 times more efficient than36

KernelCascade. Importantly, we can see that as the marker number ranges from 100 to 100,000, the running time37

of NETRATE and KernelCascade increases exponentially while our method LANTERN exhibits a linear increasing.38

One can also see the trends from Fig. 5 in the paper, where the slope of LANTERN is close to 1 (i.e., linear trend39

in uniform axis) while the slopes of two other methods are close to 2 (i.e., quadratic trend in uniform axis).40

Table 1: Comparison of running time for each method (the curves are shown in Fig .5)
Seq. Length 5 25 50

# of Marker 102 103 104 105 102 103 104 105 102 103 104 105

NETRATE 0.2 2.6 1018.3 72142.1 5.8 463.4 25075.5 - 23.5 1853.7 100300.5 -
KernelCascade 0.4 7.3 7938.6 - 10.4 183.2 108465.8 - 41.6 3333.0 433863.5 -

LANTERN 0.3 2.2 24.3 218.3 22.3 167.1 2832.4 12211.2 81.4 672.6 7333.8 65135.6

41

5. Revisions for Confusing Terminology. We apologize for misusing the ‘causal’ term to describe our hidden network42

among markers. The original motivation of using ‘causal graph’ is based on the causal-effect relations between two43

marked events in a sequence, but we ignore the fact that in a rigorous sense a causal graph is to represent the causal44

relations among different random variables. We would replace it as ‘hidden influence network’ in the final version.45
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