
We thank all of the reviewers for their careful reading of our work. In particular, several reviews made helpful1

suggestions for how we could improve the presentation, which we will implement in the next revision:2

• We will add more intuition for our construction, to address the comment that our presentation is too dense. In3

particular, we will discuss how our estimator can be viewed as a natural “graph analogue” of recent estimators4

for classical statistics (and discuss why those estimators cannot be applied directly).5

• We will add explicit constants to the description of the algorithm and its analysis. We point out that most of6

the constants appear inside the proof of Lemma 3.1, so there is no obstacle to giving explicit constants.7

• We will clarify the efficient computation of the smooth sensitivity bound S(G). In fact, the only reason it8

appears difficult to compute is because we neglected to write that ` can be restricted to integers in the range 09

to O(1/β). Given this fact, it is trivial to compute S(G) efficiently as the maximum of O(1/β) numbers. Even10

better, by analyzing the derivative (see lines 186–189), it suffices to consider the max of only three numbers.11

• We will give intuition for why the concentrated-degrees property is necessary, as requested by one of the12

reviewers. In particular, if we allow the graph to be arbitrary, then the sensitivity of the number of edges is13

high, which precludes accurate differentially private estimation. That is, we cannot privately distinguish the14

empty graph from a graph where a single node has degree n− 1.15

• We will fix all typographical and style errors and clarify all technical points raised by the reviewers.16

One reviewer also raised questions about the motivation for our work, characterizing it as “esoteric.” Our work is about17

the algorithmic foundations of privacy. Last year’s NeurIPS had numerous papers on the foundations of differential18

privacy (13 last year, by our count), including at least one oral and one spotlight presentation, suggesting a robust19

interest in this direction within the community. In the revision we will highlight the compelling motivation for our work,20

which addresses perhaps the most basic possible question about differential privacy for graphs—privately counting the21

number of edges in the graph to high accuracy.22

Edge density estimation is a very simple and natural question that is a special case or subroutine of essentially any23

statistical estimation problem involving graphs. However, it is easy to show that this problem requires large error on24

worst-case graphs, so most work has focused on how to give more accurate algorithms for realistic graphs. Degree-25

concentrated graphs are one of the most basic cases where one could hope to give more accurate answers, and even that26

was an open question prior to our work. So our results are not limited to those interested in the details of random graph27

models. Beyond the problem itself, the technical heart of our work is an efficient low-sensitivity estimator, sometimes28

called an efficient Lipschitz extension, for degree-concentrated graphs. Efficient Lipschitz extensions are at the heart29

of many problems in differential privacy, including both iid settings and graph settings. So we believe our results are30

broadly interesting to those working on the algorithmic aspects of differential privacy.31

The reviewer also raised a valid question of why differential privacy is necessary for the specific problem of estimating32

the fraction of edges in a random graph. If we are understanding correctly, the reviewer is asking why there is any real33

privacy risk for releasing the number of edges in the graph.1 We point out that one could raise a similar question about34

one of the best-studied problems in privacy, which is privately estimating a sum of numbers. There one can also make35

intuitive, or even formal claims that releasing a single sum is unlikely to harm individual privacy. However, there is36

now a large body of work (starting with the celebrated work of Dinur and Nissim, PODS’03) showing how releasing37

multiple simple statistics, including sums or the number of edges in a graph, can lead to spectacular privacy violations.38

This literature is too extensive to survey here, but we can give some examples:39

• A system for analyzing graph data may allow computing the number of edges in different subgraphs. If one40

releases the exact number of edges in multiple subgraphs that differ only on your node, then the difference41

between these two numbers is the degree of your node. So simply releasing the number of edges gives no42

privacy if we can obtain this statistic for related subgraphs.43

• More generally, releasing the number of edges in many subgraphs (even ones that are not as carefully chosen)44

will allow reconstruction of the entire graph. Reconstruction of the graph would enable various significant45

attacks (e.g. the seminal work of Backstrom, Dwork, and Kleinberg, WWW’07).46

More generally, algorithms for computing simple statistics will not be used in isolation, but instead will be used as part47

of a larger system, and thus it is important to develop differentially private algorithms for simple statistics, even when it48

is not immediately obvious that these statistics can lead to privacy breaches in isolation. Differential privacy is the only49

framework we know of that allows for arbitrary composition and consequently enables modular algorithmic design.50

1The reviewer also asks why we can’t simply release the parameter p, but this solution isn’t valid since p is precisely the parameter
we want to estimate. Also, our results apply to degree-concentrated graphs for which there is no single parameter p to release.


