
We thank all the reviewers (R4,R5,R6) for the valuable feedback.1

Difference between semantics and functionality (R6 & R5). Functionality (or correctness) of the code describes2

whether the behavior of the recovered code matches the low-level code. Semantics (or readability) is defined as the3

similarity between the recovered code and original high-level (HL) code. Our experiments (Appendix F, line 324-331)4

show that existing decompilers hardly satisfy neither functionality nor semantics. Their recovered programs are hard5

to interpret and dissimilar to the source programs. Assembly code may be incorrectly translated into the assembly6

operations in HL code. For example, mov instructions are likely to be translated into variable copy which is apparently7

redundant. Note that the semantics of the generated HL program is insensitive to recovered token while the functionality8

can be heavily affected (R6).9

Metric selection/Code examples/Table explanation (R6). Token accuracy is similar to the BLEU score for NLP10

evaluation. It shows how close the decompiled program and the original HL program are. Program accuracy measures11

the percentage of recovered programs that preserve both functionality and semantics. These metrics are also used12

in other program translation or synthesize works ([14, 36]). We provide code examples in supplementary materials13

(Appendix E, F). Table 1 shows the token accuracy after Stage 1. The final program accuracy after Stage 2 is reported14

in Table 2. As such, the results in these two tables shall not match.15

Key Motivations (R6). Our key motivations: i) Our end-to-end design makes the decompilation task more efficient and16

extensible. With the growing amount of new programming languages (PLs), new PL features (e.g. software obfuscation)17

and various hardware (TPU/GPU/FPGA/Accelerators), current decompilers are very limited in their usage and incur18

high engineering overhead. ii) Coda maintains both the functionality and semantics of the original HL program.19

Solutions to syntax errors (R6). Coda trains the auto-encoder to let the neural network learn the grammar of the HL20

language (line 41) without linguistics knowledge. Our result (Table 1) does not show the significant disadvantage of21

containing a lot of syntax errors. We encounter only a few variable usage errors that lead to decompilation failure22

because Coda automatically learns the number of variables and their types. For AST decoding method, the generated23

AST is guaranteed to be compilable. A small portion of syntax errors exists in the sequence decoding baseline and24

we use a script to check and fix these syntax bugs. The numbers in Table 1 are measured before the script checking.25

Also, the error correction stage guarantees that the sketch code from stage 1 is fault-tolerant. Other errors that do not26

influence the compilation can be corrected in the second stage.27

Recover complicated structures (R6). We use similar benchmarks as the previous decompiler works [Phoniex28

USENIX’13], including function calls, normal expressions, nested control graphs, variables with different types29

and data dependencies. Note that existing decompilers also fail to recover complicated data structures/classes. The30

type and structure identification is an individual research direction which has been widely studied in previous works31

[3][REWARD NDSS’10]. Coda is sufficient to resolve real-world applications such as Pytorch API or Hacker’s delight32

applications. Combining Coda with these works can recover more complicate programs.33

Unclear methods (R5): 1) AST tree decoder. The states (h,c) from a given AST node will feed into the left/right34

LSTM to generate the left/right child, as shown in Eq. (2) and (3) (line 201-210). These two expanded nodes will35

become the new parent nodes to generate its children using the left/right LSTM. The obtained binary AST tree (left-child36

right-sibling representation) will be transferred back to its equivalent AST tree. 2) Error Predictor Training. The37

training target is the error type of the given AST node that we manually injected. If the error type for the given node is a38

mispredicted error, the EP also outputs the correct substitution token (line 232). The training loss between the EP’s39

outputs and the targets is minimized. The training data is fixed during the EP’s training.40

Experiment with numerical representation (R4): The numerical representation is an existing issue in NLP appli-41

cations and solutions have been proposed in other works. In our case, most of the numeric is the offset addresses42

that appear frequently. We treat them the same way as other tokens. The numeric can also be represented as a43

real-value scalar. Our experiments show for small memory footprint programs (number of variables = 10), the numerical44

representation in different encoding format does not lead to significantly different performance (Scalar encoding: +0.9%45

program accuracy on average). With an increasing number of variables and memory usage (variables = 20), scalar46

format shows more scalability (+2.7% program accuracy).47

Experiment with longer codes (R6): With average code length (L) of 45/60, the token accuracy drops by (seq2seq:48

-5.4%/-13.5%,inst2ast: -3.1%/-8.4%) on average compared to L = 30 across benchmarks. For longer codes, instruction49

encoding shows better performance compared to seq2seq model. The challenges to decompile long programs are: i)50

Unlike natural language with period as the end of sentence, there is no clear boundary to divide assembly code. The51

length of the input tokenized assembly grows to a very large value (Appendix A.2). One possible solution to this52

problem is to divide the code using function entry point. ii) the GPU memory is not enough to train the network with a53

large batch size for tasks with extremely long encoding sequences.54


