
We thank the reviewers for their time and thoughts. Please find below responses specific to each reviewer’s comments:1

R1 • Please find more simulation results as well as a discussion of overfitting below.2

• We thank the reviewer for noting that our specification of exact sub-gradients was buried in the Analysis section of3

the supplement (L420-422); we will add a brief section detailing these sub-gradients used in our experiments.4

• A brief discussion of computational complexity is contained in the "Scalability" Section of the main text. We can5

expand this in the extra space provided on acceptance.6

• The surprisingly poor quality of the MR predictions on the election dataset is due to overfitting – the MR outperforms7

mean prediction on the training set, but these patterns do not transfer to the test set of other counties.8

R2 • We’d like to emphasize that PR is not a mixture model. For example, we urge R2 to consider how a mixture model9

would estimate parameter values for a component with only a single sample. This estimation would be undefined for10

mixture models but is well-defined for PR. Thus, we consider the PR method qualitatively distinct from traditional11

mixtures, and the paper should not be evaluated as simply adding a regularizer on traditional mixture models.12

• Please refer to Section B.2 of the Supplement for a discussion of hyperparameter selection, as noted at L154–155.13

• While we agree that scalability is an important problem, the clear focus of this paper is on modeling. Moreover,14

although we not consider distributed or parallel implementations in this paper, the datasets we used can hardly be15

described as “small”: for instance, the finance dataset contains over 1000 features for over 14000 samples. We16

certainly agree that parallelization of machine learning methods using tools like MapReduce and Spark improves17

scalability, but this is not our focus. As an example, DNNs proved useful in applications well-before modern18

distributed platforms for scaling DNN training (e.g. TensorFlow) were developed.19

R3 • We thank the reviewer for pointing out similar motivations in recent unsupervised domain adaptation techniques,20

which seek to adjust model parameters to the target domain. We are also interested to see further work expanding the21

idea of using task representations (encoded via covariates in PR) to improve domain adaptation algorithms.22

• Clarification: We emphasize that the low-rank and regularization schemes work together to jointly reduce overfitting23

and to promote similarity. Our interpretation of this is that model constraints (via low-rank formulation) and24

regularization (via DMR) must simultaneously be considered for sample-specific estimation to be successful.25

• Please refer to Section C of the Supplement for a discussion of the benefits of PR on specific examples.26

Simulations. Here we test the capacity of PR with varying n and p. We adapt the procedure of Section 3.1 to higher p by generating27

multidimensional U and using a coordinate of U to personalize each value in θ. More precisely, we have X ∼ Unif(−1, 1)p,28

U ∼ Unif(0, 1)K , a ∼ Unif(0, 1)p, b ∼ Unif(0, 1)p, c ∼ Cat(K)p, θj = I{Ucj
>aj} + bj sinUcj , Y (i) = X(i)θ(i) +N(0, 0.01).29

These experiments all use K = 5 covariates. PR outperforms baselines in all cases, and is strongest for large n, small p (as expected).30

p Model ||Ω̂− Ω||2 R2 MSE

2

Pop. 9.97 0.87 0.13
MR 9.86 0.88 0.12
VC 14.55 0.76 0.22

DNN 30.42 0.75 0.24
PR 7.82 0.89 0.09

10

Pop. 15.19 0.79 0.73
MR 14.81 0.80 0.70
VC 23.86 0.69 1.09

DNN 67.49 0.80 0.85
PR 14.52 0.82 0.65

25

Pop. 25.86 0.85 1.26
MR 25.75 0.86 1.20
VC 38.77 0.66 3.05

DNN 103.72 0.68 2.78
PR 24.53 0.87 1.10

Table 1: Simulations with n = 500.

n Model ||Ω̂− Ω||2 R2 MSE

100

Pop. 6.36 0.90 0.23
MR 6.48 0.90 0.23
VC 10.75 0.78 0.50

DNN 22.30 0.39 0.75
PR 6.03 0.91 0.21

500

Pop. 11.83 0.84 0.29
MR 11.78 0.84 0.30
VC 19.06 0.74 0.49

DNN 47.33 0.81 0.37
PR 10.30 0.86 0.26

2500

Pop. 33.03 0.87 0.26
MR 31.75 0.88 0.26
VC 33.71 0.87 0.27

DNN 102.88 0.88 0.29
PR 26.11 0.90 0.21

Table 2: Simulations with p = 5.

Noise and Overfitting. We thank reviewers for asking about noise and overfitting. We see that Eq. 8 is incomplete; while it describes31

a 1-NN procedure for selecting test models, we actually use k-NN by averaging the models of the k nearest training samples. Our32

experiments all use k = 3 neighbors. As we increase k, the test model approaches the population estimator (according to Eq. 7, the33

barycenter of all sample-specific models has not moved far away from the population estimator). We will fix this description of Eq. 834

for the camera-ready version by including the averaging step. Finally, we believe the out-of-sample prediction results provide strong35

evidence that any harmful overfitting of PR is outweighed by the benefit of personalized estimation. This agrees with famous results36

such as [1], where it is showed that optimal ensembles of linear models consist of overfitted atoms; see also Eq. 12 and Fig. 2 therein.37

[1]. P. Sollich and A. Krogh. Learning with ensembles: How overfitting can be useful. Advances in Neural Information Processing38

Systems, pages 190-196, 1996.39


