First of all, we would like to thank you all for your time and thoughtful comments on our manuscript.

Since our submission to NeurIPS, we continued to develop our method and managed to further improve our results. Initially, we were suspicious whether greedy layer-wise training could indeed match end-to-end trained models in performance, but conducting our experiments repeatedly yields consistent performance. We are now in the process of extracting confidence bounds and releasing our code base in order to allow the community to scrutinize our findings.

Reviewer 1 - Thank you very much for your review and the positive feedback on our method.

We appreciate your feedback to make the manuscript more self-contained and to include a more in-depth review of the precise data generation process. We will incorporate this by providing more details on the dataset that we used in our audio experiments, more specifically the phone labels that are not part of the original Librispeech dataset. These were provided by Oord et al. (2018) who obtained them by force-aligning phone sequences using the Kaldi toolkit (Povey et al., 2011) and pre-trained models on Librispeech (Panayotov, 2014). We will add this clarification in our final manuscript.

Your observation that the similarity loss of Nøkland and Eidnes (2019) has similarities to InfoNCE is very interesting and might path the way for future research on layer-wise training. As such we will include this in our discussion of their work.

There are certainly more points to discuss on whether and how the brain backpropagates information. We are happy to use the additional space of the final manuscript to provide a more in-depth discussion on this topic, including more recent theories on how neural circuits in the brain could approximate the error back-propagation algorithm (Whittington and Bogacz, 2019).

We agree that including error margins on our accuracy results can validate the stability of the training and significance of our results. We are actively working to add them to our manuscript.

Reviewer 2 - Thank you very much for your review.

We agree that the experimental setup of the ablation studies could be clarified. In the following, we provide a more thorough description which we will also incorporate in our final manuscript:

In the forward pass, the output c_t for time-step t of the autoregressive module g_{ar} is generated by taking into account the hidden state of the previous time-step h_{t-1}, as well as the current input z_t, i.e. $c_t = g_{ar}(z_t, h_{t-1})$ (omitting the module-index m here for brevity). For the backward pass in the standard GIM model, we block the flow of gradients to the previous module. We can express this using the gradient blocking operator as defined in the draft $(\text{GradientBlock}(x) \triangleq x, \nabla \text{GradientBlock}(x) \triangleq 0)$, such that $c_t = g_{ar}(\text{GradientBlock}(z_t), h_{t-1})$. In the ablation study in which we remove backpropagation through time (“GIM without BPTT”), we additionally block the flow of gradients between time-steps, such that the gradients derived from the loss at time-step t do not influence the calculation of the hidden state of the previous time-step h_{t-1}. Thus, $c_t = g_{ar}(\text{GradientBlock}(z_t), \text{GradientBlock}(h_{t-1}))$. In both of these models, we train the linear classifier on top of the representation c_t for the downstream tasks. When we remove the autoregressive module entirely (“GIM without g_{ar}”), the linear classifier is applied on the representation created by the last convolutional module (i.e. z_t).

Reviewer 3 - Thank you for your feedback.

Since no points for improvements were brought up, we focused our discussion on the points raised by reviewers 1 and 2 instead.

References

