
Before we begin, we highlight one of our key contributions: Algorithm 2. It showcases a remarkable interplay between1

statistics and optimization: the increasing step sizes scheme (required for computational optimality) only works because2

we rely on early stopping and do not aim to fully optimize the training objective. In contrast, most results in optimization3

literature consider gradient descent with constant or decreasing step sizes to ensure convergence to the objective.4

Providing more intuition (R#1 and R#2). For gradient descent (GD), our reparameterization turns additive updates5

into multiplicative updates (see lines 69-74). As a result, the scale of the parameter can be understood as inertia – the6

small parameters have a tendency to remain almost unchanged, while the larger parameters are more sensitive to the7

gradient size with respect to the standard parameterization w. Sparsity is induced with reparameterization together with8

small initialization size (one without the other doesn’t work). For more intuition see the proof sketch (Theorem 4),9

simulations and appendices A and B. Finally, previous work in the literature shows that GD implicitly regularizes the `210

norm. This corresponds to minimizing `1 norm of w in our parameterization on u,v (see lines 255-256).11

Choice of hyperparameters (R#1 and R#2). As discussed in lines 201-208, we only need to know w?
max up to12

multiplicative factors to properly initialize α and η. Theorem 2 shows how to obtain such an estimate. Hence we only13

need to tune the stopping time, which can be done by cross-validation.14

Response to Reviewer #1.15

1. See our paragraphs on intuition and hyperparameters above.16

2. Most work on implicit `2 regularization focus on GD with a constant step size usually stopping at Θ(
√
n) iterations;17

(ηt)−1 corresponds to the Ridge regression λ. In lines 195-200 we discuss connections to Thm 1 and 3. On the other18

hand, we are not aware of other work on implicit regularization achieving computational optimality via an increasing19

step sizes scheme (Alg. 2). We highlight that in our case implicit regularizer is not strictly `1 norm (see lines 125-12620

and 334-339) and our work, to the best of our knowledge, is first to induce sparsity implicitly in a general noisy setting.21

3. This remains an open question not considered in our paper. We believe that a good starting point would be to22

experiment with individualized initialization sizes and step sizes among each dimension/group.23

Improvements section. We agree with the suggestion and plan to add an additional paragraph to the related literature24

section, expanding on the second point above. Subject to space considerations we will also expand on intuition.25

Response to Reviewer #2.26

1. For sparsity of the optimization path see proof sketch (Thm 4), simulations (lines 314-316)27

and the main proofs. For sparsity at the stopping time, see the `∞ bound on Sc in Thm 1.28

2. w?
max is defined in line 84. Line 151 refers to table of notation.29

3. Since X needs to only satisfy RIP, n depends only logarithmically on d.30

Improvements section. For intuition and hyperparameters, see the two paragraphs at the31

top of the rebuttal. To address the concerns on RIP assumption being too strong, we have32

performed additional situations when RIP assumption fails. Consider the setting given in33

lines 322-332, with rows of X now sampled from N(0,Σ), with Σ = (1− µ)I + µ11T/d.34

On the right, we plot simulation results with µ = 0 (RIP holds) and µ = 0.5 (RIP fails). We35

see that even when RIP fails, our method still exhibits correct rates and outperforms the lasso36

when the phase transition happens. The gap between gradient descent and the oracle method37

is visible due to the log k factor in Corollary 3, suggesting also that the rate given in Corollary 3 could be tight. We38

will address the reviewers concerns by adding a section on potential improvements with an expansion of the above39

discussion. We will also compare and contrast RIP and RE assumptions. If space permits, we will also slightly expand40

on the intuition.41

Response to Reviewer #3.42

We have previously attributed the quadratic sample complexity in k to our bounds43

being `∞ (which is harder) rather than `2. Our focus has been on minimax-rates and44

dimension-independent rates with optimal computational complexity. Also, while there45

is loss in sample complexity, there is gain in performance that is impossible to be46

achieved by the lasso (see Corollary 3 and lines 334-339).47

We stick to the simulation setting described in lines 308-313 and 322-328, with d =48

5000. The left figure on the right compares `2 error ratios for gradient descent and49

lasso. The blue region corresponds to our method achieving lower error, while the red50

region corresponds to the lasso achieving lower error than gradient descent. This plot strongly suggests, that sample51

complexity linear in k should indeed be enough to match/exceed performance of the lasso. The question remains,52

whether the `∞ bounds in Theorems 1 and 3 (in particular for stopping time t, ||wt � 1Sc ||∞ ≤
√
α) require sample53

complexity quadratic in k? The figure on the right side suggests that the sample complexity linear in k is enough to54

satisfy even the `∞ bounds. We expect this sample complexity gap to be addressed in future work.55

Given the results above, we absolutely agree with the suggestion to include a discussion on sub-optimal sample56

complexity in our revision. We plan to do so in an extra section on potential improvements (see also response to R#2).57


