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AOPC [R1,R2] We employ Area Over Prediction Curve (AOPC) [Samek et.al, arXiv:1509.06321], a principled way1

of quantitatively evaluating the validity of neural network interpretations, to check whether the manipulated model also2

has been significantly changed by fooling the interpretation. From the definition of AOPC, we can conclude that the3

interpretation is closely tied to the actual prediction procedure of the model if AOPC rapidly increases with the number4

of perturbation of input pixels. Fig. (a) shows the average AOPC curves on 10K validation images for the original5

and manipulated DenseNet121 models, wo and w∗fool, with three different perturbation orders; i.e., with respect to6

the hIc (wo) scores, hIc (w
∗
fool) scores, and a random order. We did the Top-k fooling with I being Grad-CAM. From7

the figure, we observe that wo(h
I
c (wo)) and w∗fool(h

I
c (wo)) show almost identical AOPC, which suggests that w∗fool8

has not changed much from wo and is making its prediction by focusing on similar parts that wo bases its prediction.9

In contrast, the AOPC of both wo(h
I
c (w

∗
fool)) and w∗fool(h

I
c (w

∗
fool)) lie significantly lower, even lower than the10

case of random perturbation. From this, we can deduce that hIc (w
∗
fool) is highlighting parts that are less helpful than11

random pixels for making predictions, hence, is a “wrong” interpretation. We believe the notion of “good/bad/wrong”12

interpretation (Re:[R2]) can be defined by examining the AOPC of hIc (·) and that of random perturbation. Furthermore,13

the [Basic question] (Re:[R1]) says that [Ross et.al, 2017] can be contradicting to our result, but depending on the14

training objective and model capacity, we believe the two phenomenon can both exist.15

Robustness of/detecting our fooling [R1,R3] Detecting or undoing our model manipulation would not be easy as we16

cannot easily access the original interpretation results or training data. Fig. (b) shows a feasible attempt, inspired by17

[Roth et al., arXiv:1902.04818], fails for detecting our manipulation. Namely, as the adversarial input examples can18

be detected by adding small Gaussian perturbation to the input, we may also suspect that adding small Gaussian noise19

to the parameters might reveal our fooling. However, Fig. (b) shows that wo and w∗fool behave very similarly in terms20

Top-1 accuracy as we increase the Gaussian noise level, and FSR do not change radically, either. Another possible21

detection scheme would be to use a black-box interpreter and compare its AOPC with that of the fooled model.22

[R1] ¬ We will modify the acronym for Simple Gradient and correct the error regarding LRP passing the sanity23

check. ­ We found fooling SmoothGrad / Integrated Gradients while maintaining the accuracy is much harder, as the24

reviewer has expected. (LIME is a black-box interpreter and is out of scope.) We will discuss this result in our final25

version. ® Fig. (c), which shows the accuracy of a ResNet50 model on Dval and PGD(Dval) (i.e., the PGD-attacked26

Dval), demonstrates that adversarially trained model can be also adversarially manipulated by our method. Namely,27

starting from a pre-trained wo (dashed red), we adversarially train the model with PGD attacks (ε = 1.5) [Shafahi et.al,28

arXiv:1904.12843] to obtain wadv (dashed green), then started our adversarial model manipulation with Location29

fooling with Grad-CAM. Note the Top-1 accuracy on Dval drops while that on PGD(Dval) increases during adversarial30

training phase, and they are maintained during our model manipulation phase (e.g., at blue dashed line). The right panel31

shows the Grad-CAM interpretations of two images at three distinct phases (see the color-coded boundaries), and we32

clearly see the success of the Location fooling (blue dashed, third row). ¯ We plan to release the code after acceptance.33

[R2] ¬ We will carry out more thorough investigation on active fooling in the future work. Moreover, LRPT is our34

novel variation of LRP, and the local characteristic of LRPT is maintained to LRP since the relevance values of LRPT35

are propagated down to the input pixel level. Directly fooling with LRP did not work well. ­ We have randomly36

selected the visualization examples, and have not cherry-picked. ® We argue the correlation metric also is not enough to37

accurately measure the success of fooling; e.g., in Location fooling, the mere correlation cannot tell whether the fooling38

was successful. Instead, we devised FSR to more directly measure the success of intended fooling. For computing FSR,39

we simply randomly selected 10K images from the ImageNet validation, and `2, a common measure of distance in 2-D40

images, is used in FSR for Center-mass fooling even though `1 and `2 give almost the same result. ¯ For L248/L25541

comments, please refer to the AOPC results. ° We will emphasize the contrast between the random parametrization.42

[R3] ¬ Our method does share some similarities with backdooring; e.g., manipulating model parameters to hide some43

intention while maintaining the accuracy. However, the setting/objective are radically different. Namely, backdooring44

has nothing to do with the interpretation of a model, and it could even be detected by the interpretation methods. But,45

with our model manipulation, we can even make the backdooring stronger to be not caught by the interpretation methods.46

­ To support the motivation of our work, we carried out additional experiment on the ‘Adult income’ classification data47

in [UCI ML Repository]. We trained a classifier with 8 conv layers, wo, and the LRP result in Fig. (d) (blue) shows48

it assigns high importance on sensitive features like ‘Race’ and ‘Sex’. Now, we (or a lazy developer) can manipulate the49

model with Location fooling that zero-masks the two features and obtain wfool that essentially has the same accuracy50

of 76.8% as wo but with a new interpretation that disguises the bias (orange). Obviously, from our discussions on51

AOPC etc. above, the lazy developer has not resolved the bias in the model but simply fooled the interpretation result.52


