
[R1/R3] Why affine mappings / location-scale families. We certainly agree that it would be great to have a similar1

analysis for more general distributions (and we discussed this in Sec. 5.4) However, we would like to emphasize three2

points:3

• The current analysis represents an important first step. The results of this paper are by far the strongest gradient4

variance bounds that have been shown to date. This paper shows one successful “path” for unimprovable5

bounds for location-scale families. This is an important first step for addressing more complex distributions.6

• The current paper’s analysis is rather difficult. The paper itself are supported by more than 8 pages of proofs7

in the appendix. It would be unreasonable to add additional content. We have made every effort to simplify8

the presentation and make the results here accessible, which may conceal the technical difficulty to some9

degree. Still, no reasonable person could call these results “straightforward” and we kindly ask that this be10

reconsidered after consulting the full proofs.11

• Location-scale families are important! For example, the ADVI implementation in Stan is widely used and12

based on Gaussians (a subset of location-scale families). The Bayesian CLT means that many posteriors13

really are “nearly” Gaussian. The complexity of the variational distribution represents a kind of complex-14

ity/reliability/accuracy tradeoff. It remains firmly within the interest of NeurIPS to investigate Gaussian15

variational distributions. These are almost certainly the single-most import variational family and (before now)16

not much was understood about the resulting variance. This is doubly true when the analysis strategy may lead17

to progress on more complex variational distributions.18

[R3] clarifying whether the variance of the gradient estimator of h(w) plays a role in controlling the overall19

variance? We address this in Section 5.3, though more elaboration may be helpful. Fortunately, there is no need for20

concern. Firstly, with location-scale families one can compute h(w) (or its gradient) exactly. As we discuss in Sec. 5.221

some SGD convergence bounds can be written in terms of the gradient variance rather than E ‖g‖2 . Since (1) an exact22

entropy gradient does not increase the variance, and (2) the variance of an estimator of∇l(w) cannot be much lower23

than the mean squared norm of an estimator of∇l(w) (Sec 5.2)), the paper focuses on this latter task.24

On the other hand, if the entropy will be estimated, then log q can be “absorbed” into f – see the discussion on lines25

230-235.26

[R1 / R3] How to choose the smoothness constant? This indeed a limitation (as we mention in Sec. 5.4). However,27

keep in mind that the vast majority of non-stochastic optimization rates also require smoothness. Because smoothness is28

so widely used, many ideas have been proposed in the optimization literature for explicitly estimating the constant, e.g.29

• Stochastic First- and Zeroth-Order Methods for Non-convex Stochastic Programming, Ghadimi and Lan,30

SIAM Journal on Optimization, 2013.31

• Lipschitz gradients for global optimization in a one-point-based partitioning scheme, Kvasov and Sergeyev,32

Journal of Computational and Applied Mathematics, 2012.33

The smoothness constant (and gradient variance) influence the convergence rate via the step-size. In practice, of course,34

people often manually experiment with different step-sizes. So, roughly speaking, this paper says that if one is able to35

tinker with step-sizes to to find z∗ = argmaxz p(z, x) then one should also be able to do VI.36

[R3] considering there is now result on controlling the variance of the gradient estimator of the VI objective, is37

it possible to provide a confidence interval (approximate) of the gradient estimate?. While we aren’t quite sure38

of the motivation, this appears possible. From the multivariate Chernoff bound, we know that if g has mean µ and39

a covariance matrix with singular values σ = (σ1 · · ·σn), then P[‖g − µ‖2 ≥ k ‖σ‖2] ≤
1
k2 . So, if we know that40

E ‖g‖22 ≤ c then ‖σ‖22 =
∑n

i=1 σ
2
n = trV[g] ≤ E ‖g‖22 ≤ c and so P[‖g − µ‖2 ≥ k

√
c] ≤ 1

k2 . Choosing a given41

confidence level and inverting this equation will give a confidence set for µ. (A confidence set rather than interval since42

g is a vector.)43

[R1] I am wondering whether the author can use the functional analysis tool to approximate an arbitrary44

function with a representation of infinite sum of basic functions, for example, satisfying the conditional \sum45

M_i < \infty. This is an interesting idea, but it’s not straightforward since the sum must be over the individual sampled46

functions. If an arbitrary function is represented as an infinite sum of simple functions, the bound wouldn’t immediately47

apply unless one could sample a simple function. Of course, with further work something along these lines might48

work, but that would be a paper of its one. Of course (probably unsurprisingly) we see the fact that this paper suggests49

directions like this as further evidence of its value.50


