
We thank the reviewers for their valuable comments. We believe that their feedback, especially the comments on1

communication budget, significantly improved the integration and presentation of the paper.2

Response to Reviewer 1.3

There is a dimension dependence and it seems this dependence is hidden in the big-O notation. How does the4

final accuracy (or communication complexity) depend on d? Is it optimal or can we improve it? How do we5

compare it with prior works? – The exact length of signals in the MRE algorithm is d/(d+ 1) logm+ d log n which6

is no larger than d logmn. Dependence of the accuracy on d is already reflected in Theorem 1 and Corollary 1. Prior7

works in [Zhang et al. 2012] and [Jordan et al. 2018], although not specifically mentioned, require communication8

budgets of O(d logmn) and O(dm) bits, respectively. Regarding optimality of the budget with respect to d, we are9

not aware of a lower bound that reflects an explicit dependence on d. It is a very intriguing question whether or not10

vanishing error is possible under signals of lengths sub-linear in d.11

Minor comments: a) Prior to Section 3.1, it seems that the function is defined in the space [−1, 1]d. But in12

Section 3.1, it changed to [0, 1] without an explicit statement; b) Page 5, line 178, θi → θi. – a) Explicit statement13

will be added to the finial submission. b) Corrected.14

Response to Reviewer 2.15

The paper has a technical improvement wherein they relax the class of functions that are being studied. It16

is unclear that allowing functions that are Lipschitz continuous with continuous first order derivatives is of17

terrific importance. The authors need to elaborate on the importance of this assumption. – The assumption is18

indeed both practically important and technically challenging. It is well-known that the loss landscapes involved in19

learning applications and neural networks are highly non-smooth. For example, the loss surface of a neural network20

with ReLU activations is non-differentiable. Even when the activation functions are differentiable, the loss surface of a21

deep network would be far from smoothness. Therefore, relaxing assumptions on higher order derivatives is actually a22

practically important improvement over the previous works.23

On the other hand, the assumption brings in serious technical challenges. To see this, note that when n > m, the24

existing upper bound O(
√
mn+ 1/n) for the case of Lipschitz second derivatives goes below the O(m1/dn1/2) lower25

bound in the case of Lipschitz first derivatives. This shows that the first order derivative assumption makes the problem26

way more difficult. We will add discussions on these points in the final submission.27

While the general exposition is clear, the discussion of related work needs to be more thorough. The importance28

of the problem should be motivated more clearly. – “The problem has gathered a lot of interest recently, especially29

in the setting of federated learning, where the data are located on users’ devices”. We will make the motivation more30

clear in the final submission.31

Study the problem in some other, more general, communication models. – We think this is a very important32

comment and take it seriously. Please refer to the response to the first question of Reviewer 3.33

Response to Reviewer 3.34

The result could have been stronger if the author can analyze the whole tradeoff between the communication35

budget and expected loss. – Thanks to this comment, we realized that by a simple modification, our algorithm can36

handle the case of general communication budget. Better yet, the expected loss of this modified algorithm still matches37

the existing lower bounds up to logarithmic factors. Below we briefly discuss this modification and the optimality of its38

expected loss. We will revise the final version of the paper to reflect these facts.39

The modified algorithm: Let b be the communication budget (the number of bits) per signal. Each machine divides its40

b-length signal into b/(d logmn) number of (d logmn)-long sub-signals. Each sub-signal contains an independent41

instance of the MRE signal, i.e., it is a triple (s, p,∆) devised according to the rules in Section 3.3. Although all42

sub-signals of a machine involve a same underlying set of observed functions f ij , the choices of their p parts are43

independent (i.e., they encode information of different parts of a same set of functions). The server then collects all the44

sub-signals and follows a rule similar to MRE.45

Proof of optimality: With a small modification of Lemma 3 and keeping the rest of the proof unchanged, it is not difficult46

to show that the above idea of dividing each signal into b/(d logmn) sub-signals has an effect equivalent to multiplying47

the number of machines by b/(d logmn). Therefore the expected error of the modified algorithm would be equal to48

the expression in Corollary 1 with m replaced with mb/(d logmn), that is E
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= Õ
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. This49

matches the lower bound in Theorem 1 of [Salehkaleybar et al. 2019] up to a polylogarithmic factor, and is thereby50

order optimal.51

Minor comments: a) There are missing ellipsis in Fig 1. b) Corollary 1 seems to be stated in the wrong direction.52

c) It would be nice to include d, the dimensionality in the communication budget or state the dependence clearly53

at the beginning. – a) Modified. b) Corrected. c) Please refer to the response to the first question of Reviewer 1.54


