
We sincerely thank all reviewers for your contributions in reviewing this paper. Your comments are very helpful to1

refine this work. We will primarily respond to your concerns about the experiment comparisons and algorithm novelty.2

Q1: Compare with AutoML based pruning methods like AMC[56] and MetaPruning[57] (Reviewer #2).3

It’s a very good suggestion. Comparing with these works would help us to demonstrate the potential of GD algorithm in4

the network search tasks. We ran a new experiment on the MobileNet during this week. Although we were unable to5

make carefully hyper-parameter tuning due to the time constraints, we still got comparable results. Moreover, in order6

to emphasize that our method has achieved SOTA results, we add more comparisons with the latest CVPR’197

papers. We summarized the new comparisons in the following table, which will be included in the final version. The8

symbol "←" indicates using the same network or dataset as its left. Our work is reproducible and the code has been9

included in the submission for review. We will open source all of our code if this work is accepted.10

Work [58] [59] [6] Ours [56] Ours [56] [57] Ours
Publish CVPR’19 oral CVPR’19 CVPR’19 - ECCV’18 - ECCV’18 arxiv’19 -

Network ResNet-50 ← ← ← ResNet-56 ← MobileNet ← ←
Dataset ImageNet ← ← ← CIFAR-10 ← ImageNet ← ←

FLOPs ↓ 53% 55% 55% 55% 50% 60% 50% 50% 60%
Top-1 Acc. 74.83 71.80 74.54 75.18 91.90 93.41 70.5 70.4 70.2

Q2: Compare with SSS[60] (Reviewer #3).11

Great thanks for providing this paper. It’s a good work and we will include our comparision with it in the final version.12

But there is a mistake in your comment which we have to correct. The result of "error rate 26.8% with 66% FLOPs13

reduction" you mentioned in [60] is not from ResNet-50 but ResNeXt-50. However, [60] does provide the pruning14

results of ResNet-50 (Table 2: ResNet-50→ ResNet-26), so we can directly compare with it without adding extra15

experiments. [60] prunes 43% FLOPs of the ResNet-50 with 71.82% Top-1 accuracy remained. We could reach 55%16

FLOPs reduction with 75.18% Top-1 accuracy, which is significantly better than [60].17

Q3: The concern about novelty (Reviewer #1 and #2).18

We will explain in detail the novelty and contributions of our work. The GD algorithm is inspired by the previous19

publications, especially [26, 31]. They are all excellent works, but we found some weaknesses in their methods. [31]20

was published in late 2016, which first applies the Taylor series to the filter pruning task. However, because of the21

problems we discussed in the section 3.4, the results [31] presents is not outstanding. The way it applies Taylor series22

lead to 2 flaws: (1) The accumulation of estimation errors. (2) The importance scores of filters between different23

layers cannot be directly compared with each other. The first problem was ignored, but the second problem cannot be24

overlooked. To fix the second problem, [31] has to introduce the mechanism called "score normalization". In spite25

of this, the solution is still not ideal. We are aware of these two problems in [31] and avoid them by introducing26

the gate factor and modifying the way to applies Taylor expansion formula. In the Figure.4 we can see that even27

without considering the other improvements proposed in our paper, just introducing this simple change is enough28

for our algorithm to outperform [31] by a large margin (57% vs. 45% in accuracy under 70% FLOPs reduction).29

This improvement is simple and effective, but to our knowledge, in the past nearly three years, no similar work has30

been proposed. One of the reasons could be the flaws in [31] are easy to be neglected. So we argue that despite this31

improvement shows in simple formation, it’s still an important contribution.32

On the other hand, [26] inspired us to take advantage of γ in the BN layer. [26] relies on the absolute value of γ to score33

the filters. This makes it performs terrible when pruning a network that trained without sparse constrained on34

γ (See Figure 4). But this situation is often encountered, especially when using the networks that pre-trained for35

other tasks. Different from [26], we don’t require training the network from scratch in sparse constraints. In all our36

experiments, the baseline networks before pruning were normally trained without sparse constraints on γ. Our advantage37

comes from more accurate score estimate and the specially designed Tick-Tock pruning framework. Furthermore,38

for those network without BN, GD could be directly applied to the convolution layers (see Appendix).39

The Tick-Tock and Group Pruning are our originally designed modules. The Tick-Tock is very efficient for40

iterative pruning algorithm. According to our experiments, we can save 70% of the computation time compared to41

just using fine-tune to get the same results in the ImageNet task. Furthermore, Group Pruning increases the pruning42

ratio in the case of constraints, and it can also be used by other global pruning methods, not just GBN.43

44

[56] "AMC: AutoML for Model Compression and Acceleration on Mobile Devices.", ECCV 201845

[57] Liu et al. "MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning."46

[58] "Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration.", CVPR 201947

[59] "Towards Optimal Structured CNN Pruning via Generative Adversarial Learning.", CVPR 201948

[60] "Data-Driven Sparse Structure Selection for Deep Neural Networks.", ECCV 201849


