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Policy	OpMmizaMon	
n  Consider	control	policy	parameterized	

by	parameter	vector	

	

n  OQen	stochasMc	policy	class	(smooths	
out	the	problem):	
																				:	probability	of	acMon	u	in	state	s		

✓

max
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[Figure	source:	SuBon	&	Barto,	1998]	 John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  OQen						can	be	simpler	than	Q	or	V	
n  E.g.,	roboMc	grasp	

n  V:	doesn’t	prescribe	acMons	
n  Would	need	dynamics	model	(+	compute	1	Bellman	back-up)	

n  Q:	need	to	be	able	to	efficiently	solve	
n  Challenge	for	conMnuous	/	high-dimensional	acMon	spaces*	

Why	Policy	OpMmizaMon	
⇡

*some	recent	work	(parMally)	addressing	this:		
	NAF:	Gu,	Lillicrap,	Sutskever,	Levine	ICML	2016	
	Input	Convex	NNs:	Amos,	Xu,	Kolter	arXiv	2016		

argmax

u
Q✓(s, u)

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



Kohl	and	Stone,	2004	

Example	Policy	OpMmizaMon	Success	Stories	

Tedrake	et	al,	2005	 Kober	and	Peters,	2009	Ng	et	al,	2004	

Silver	et	al,	2014	
(DPG)	

Lillicrap	et	al,	2015	
(DDPG)	

Schulman	et	al,	
2016	(TRPO	+	GAE)	

Levine*,	Finn*,	et	
al,	2016	
(GPS)	

Mnih	et	al,	2015	
(A3C)	

Silver*,	Huang*,	et	
al,	2016	

(AlphaGo**)	
John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



Policy	OpMmizaMon	in	the	RL	Landscape	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



Policy	OpMmizaMon	in	the	RL	Landscape	

DQN:	Mnih	et	al,	Nature	2015	
Double	DQN:	Van	Hasselt	et	al,	AAAI	2015	
Dueling	Architecture:	Wang	et	al,	ICML	2016	
PrioriMzed	Replay:	Schaul	et	al,	ICLR	2016	
David	Silver	ICML	2016	tutorial	



n  DerivaMve	free	methods	

n  Cross	Entropy	Method	(CEM)	/	Finite	Differences	/	Fixing	Random	Seed	

n  Likelihood	RaMo	(LR)	Policy	Gradient	

n  DerivaMon	/	ConnecMon	w/Importance	Sampling	

n  Natural	Gradient	/	Trust	Regions	(->	TRPO)	

n  Variance	ReducMon	using	Value	FuncMons	(Actor-CriMc)	(->	GAE,	A3C)	

n  Pathwise	DerivaMves	(PD)		(->	DPG,	DDPG,	SVG)	

n  StochasMc	ComputaMon	Graphs	(generalizes	LR	/	PD)	

n  Guided	Policy	Search	(GPS)	

n  Inverse	Reinforcement	Learning	

Outline		
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n  Views	U	as	a	black	box	

n  Ignores	all	other	informaMon	
other	than	U	collected	during	
episode		

Cross-Entropy	Method	
max

✓
U(✓) = max

✓
E[

HX

t=0

R(st)|⇡✓]

CEM:	
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ē
		=	evoluMonary	algorithm	

					populaMon:		

	

Pµ(i)(✓)

(✓(e), U(e))



n  Can	work	embarrassingly	well	

Cross-Entropy	Method	

[NIPS	2013]	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  Reward	Weighted	Regression	(RWR)	

n  Dayan	&	Hinton,	NC	1997;	Peters	&	Schaal,	ICML	2007	

n  Policy	Improvement	with	Path	Integrals	(PI2)	

n  PI2:	Theodorou,	Buchli,	Schaal	JMLR2010;	Kappen,	2007;	(PI2-CMA:	Stulp	&	Sigaud	ICML2012)	

n  Covariance	Matrix	AdaptaMon	EvoluMonary	Strategy	(CMA-ES)	

n  CMA:	Hansen	&	Ostermeier	1996;		(CMA-ES:	Hansen,	Muller,	Koumoutsakos	2003)	

	

n  PoWER	

n  Kober	&	Peters,	NIPS	2007	(also	applies	importance	sampling	for	sample	re-use)	

Closely	Related	Approaches	
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Covariance	Matrix	AdaptaMon	(CMA)	has	
become	standard	in	graphics	[Hansen,	
Ostermeier,	1996]	

ApplicaMons	
PoWER	[Kober&Peters,	MLJ	2011]	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  Full	episode	evaluaMon,	parameter	perturbaMon	

n  Simple	

n  Main	caveat:	best	when	number	of	parameters	is	relaMvely	small	

n  i.e.,	number	of	populaMon	members	comparable	to	or	larger	than	number	of	
(effecMve)	parameters	

	à	in	pracMce	OK	if	low-dimensional	θ	and	willing	to	do	do	many	runs	

à	Easy-to-implement	baseline,	great	for	comparisons!	

Cross-Entropy	/	EvoluMonary	Methods	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



Black	Box	Gradient	ComputaMon	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



Challenge:	Noise	Can	Dominate	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



SoluMon	1:		Average	over	many	samples	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



SoluMon	2:	Fix	random	seed	

fixed	random	
seed	sample	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  Randomness	in	policy	and	dynamics	
n  But	can	oQen	only	control	randomness	in	policy..	

n  Example:		wind	influence	on	a	helicopter	is	stochasMc,	but	if	
we	assume	the	same	wind	paBern	across	trials,	this	will	make	
the	different	choices	of	θ	more	readily	comparable	

n  Note:	equally	applicable	to	evolu2onary	methods	

[Ng	&	Jordan,	2000]	provide	theoreMcal	analysis	of	gains	from	fixing	randomness	(“pegasus”)	

SoluMon	2:	Fix	random	seed	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



[Ng + al, ISER 2004] [Policy search was done in simulation] 



Learning	to	Hover	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  DerivaMve	free	methods	

n  Cross	Entropy	Method	(CEM)	/	Finite	Differences	/	Fixing	Random	Seed	

n  Likelihood	Ra'o	(LR)	Policy	Gradient	

n  Deriva'on	/	Connec'on	w/Importance	Sampling	

n  Natural	Gradient	/	Trust	Regions	(->	TRPO)	

n  Variance	ReducMon	using	Value	FuncMons	(Actor-CriMc)	(->	GAE,	A3C)	

n  Pathwise	DerivaMves	(PD)		(->	DPG,	DDPG,	SVG)	

n  StochasMc	ComputaMon	Graphs	(generalizes	LR	/	PD)	

n  Guided	Policy	Search	(GPS)	

n  Inverse	Reinforcement	Learning	

Outline		



Likelihood	RaMo	Policy	Gradient	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



Likelihood	RaMo	Policy	Gradient	

[Aleksandrov,	Sysoyev,	&	Shemeneva,	1968]	
[Rubinstein,	1969]	
[Glynn,	1986]	
[Reinforce,	Williams	1992]	
[GPOMDP,	Baxter	&	BartleB,	2001]	 John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	
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DerivaMon	from	Importance	Sampling	
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Note:	Suggests	we	can	also	look	at	more	than	just	gradient!	[Tang&Abbeel,	NIPS	2011]	 John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	
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Suggests	we	can	also	look	at	more	than	just	gradient!	
E.g.,	can	use	importance	sampled	objecMve	as	“surrogate	loss”	(locally)	

[Tang&Abbeel,	NIPS	2011]	 John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  Valid	even	if	R	is	disconMnuous,	and	
unknown,	or	sample	space	(of	paths)	
is	a	discrete	set		

Likelihood	RaMo	Gradient:	Validity	

rU(✓) ⇡ ĝ =

1

m

mX

i=1

r✓ logP (⌧ (i); ✓)R(⌧ (i))

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  Gradient	tries	to:	
n  Increase	probability	of	paths	with	

posiMve	R	

n  Decrease	probability	of	paths	with	
negaMve	R	

Likelihood	RaMo	Gradient:	IntuiMon	

rU(✓) ⇡ ĝ =

1

m

mX

i=1

r✓ logP (⌧ (i); ✓)R(⌧ (i))

!	Likelihood	raMo	changes	probabiliMes	of	experienced	paths,	
does	not	try	to	change	the	paths	(see	Path	DerivaMve	later)	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



Let’s	Decompose	Path	into	States	and	AcMons	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	
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Let’s	Decompose	Path	into	States	and	AcMons	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



Likelihood	RaMo	Gradient	EsMmate	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  As	formulated	thus	far:	unbiased	but	very	noisy	

n  Fixes	that	lead	to	real-world	pracMcality	
n  Baseline	

n  Temporal	structure	

n  Also:	KL-divergence	trust	region	/	natural	gradient	(=	general	trick,	
equally	applicable	to	perturbaMon	analysis	and	finite	differences)	

Likelihood	RaMo	Gradient	EsMmate	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  To	build	intuiMon,	let’s	assume	R	>	0	

n  Then	tries	to	increase	probabiliMes	of	all	paths	

à  Consider	baseline	b:	

						Good	choices	for	b?	

Likelihood	RaMo	Gradient:	Baseline	
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sMll	unbiased	
[Williams	1992]	
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[See:	Greensmith,	BartleB,	Baxter,	JMLR	2004	
for	variance	reducMon	techniques.]		



n  	Current	esMmate:	
	

	

n  Future	acMons	do	not	depend	on	past	rewards,	hence	can	lower	variance	
by	instead	using:	

n  Good	choice	for	b?		

	Expected	return:		

à	Increase	logprob	of	acMon	proporMonally	to	how	much	its	returns	are	beBer	than	the	
expected	return	under	the	current	policy	

Likelihood	RaMo	and	Temporal	Structure	
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[Policy	Gradient	Theorem:	SuBon	et	al,	NIPS	1999;	GPOMDP:	BartleB	&	
Baxter,	JAIR	2001;	Survey:	Peters	&	Schaal,	IROS	2006]		 John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



Pseudo-code	Reinforce	aka	Vanilla	Policy	Gradient	

~	[Williams,	1992]	 John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  DerivaMve	free	methods	

n  Cross	Entropy	Method	(CEM)	/	Finite	Differences	/	Fixing	Random	Seed	

n  Likelihood	RaMo	(LR)	Policy	Gradient	

n  DerivaMon	/	ConnecMon	w/Importance	Sampling	

n  Natural	Gradient	/	Trust	Regions	(->	TRPO)	

n  Variance	Reduc'on	using	Value	Func'ons	(Actor-Cri'c)	(->	GAE,	A3C)	

n  Pathwise	Deriva'ves	(PD)		(->	DPG,	DDPG,	SVG)	

n  Stochas'c	Computa'on	Graphs	(generalizes	LR	/	PD)	

n  Guided	Policy	Search	(GPS)	

n  Inverse	Reinforcement	Learning	

Outline		



Trust Region Policy Optimization



Desiderata

Desiderata for policy optimization method:

I Stable, monotonic improvement. (How to choose stepsizes?)

I Good sample e�ciency



Step Sizes

Why are step sizes a big deal in RL?
I Supervised learning

I Step too far ! next updates will fix it

I Reinforcement learning
I Step too far ! bad policy
I Next batch: collected under bad policy
I Can’t recover, collapse in performance!



Surrogate Objective

I Let ⌘(⇡) denote the expected return of ⇡

I We collect data with ⇡
old

. Want to optimize some objective to get a new
policy ⇡

I Define L⇡
old

(⇡) to be the “surrogate objective”1

L(⇡) = E⇡
old


⇡(a | s)

⇡
old

(a | s)A
⇡
old(s, a)

�

r✓L(⇡✓)
��
✓
old

= r✓⌘(⇡✓)
��
✓
old

(policy gradient)

I Local approximation to the performance of the policy; does not depend on
parameterization of ⇡

1S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. In: ICML. vol. 2. 2002, pp. 267–274.



Improvement Theory

I Theory: bound the di↵erence between L⇡
old

(⇡) and ⌘(⇡), the performance of
the policy

I Result: ⌘(⇡) � L⇡
old

(⇡) � C · maxs KL[⇡old

(· | s), ⇡(· | s)], where
c = 2✏�/(1 � �)2

I Monotonic improvement guaranteed (MM algorithm)



Practical Algorithm: TRPO

I Constrained optimization problem

max
⇡

L(⇡), subject to KL[⇡
old

, ⇡]  �

where L(⇡) = E⇡
old


⇡(a | s)

⇡
old

(a | s)A
⇡
old(s, a)

�

I Construct loss from empirical data

L̂(⇡) =
NX

n=1

⇡(an | sn)
⇡

old

(an | sn)
Ân

I Make quadratic approximation and solve with conjugate gradient algorithm

J. Schulman, S. Levine, P. Moritz, et al. “Trust Region Policy Optimization”. In: ICML. 2015



Practical Algorithm: TRPO

for iteration=1, 2, . . . do

Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Compute policy gradient g
Use CG (with Hessian-vector products) to compute F

�1
g

Do line search on surrogate loss and KL constraint
end for

J. Schulman, S. Levine, P. Moritz, et al. “Trust Region Policy Optimization”. In: ICML. 2015



Practical Algorithm: TRPO

Applied to

I Locomotion controllers in 2D

I Atari games with pixel input

J. Schulman, S. Levine, P. Moritz, et al. “Trust Region Policy Optimization”. In: ICML. 2015



“Proximal” Policy Optimization

I Use penalty instead of constraint

minimize
✓

NX

n=1

⇡✓(an | sn)
⇡✓

old

(an | sn)
Ân � �KL[⇡✓

old

, ⇡✓]

I Pseudocode:

for iteration=1, 2, . . . do

Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Do SGD on above objective for some number of epochs
If KL too high, increase �. If KL too low, decrease �.

end for

I ⇡ same performance as TRPO, but only first-order optimization
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old
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I Pseudocode:
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Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Do SGD on above objective for some number of epochs
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end for

I ⇡ same performance as TRPO, but only first-order optimization



Variance Reduction Using Value Functions



Variance Reduction

I Now, we have the following policy gradient formula:

r✓E⌧ [R] = E⌧

"
T�1X

t=0

r✓ log ⇡(at | st , ✓)A⇡(st , at)

#

I
A

⇡ is not known, but we can plug in Ât , an advantage estimator

I Previously, we showed that taking

Ât = rt + rt+1 + rt+2 + · · · � b(st)

for any function b(st), gives an unbiased policy gradient estimator.
b(st) ⇡ V

⇡(st) gives variance reduction.



The Delayed Reward Problem

I With policy gradient methods, we are confounding the e↵ect of multiple
actions:

Ât = rt + rt+1 + rt+2 + · · · � b(st)

mixes e↵ect of at , at+1, at+2, . . .

I SNR of Ât scales roughly as 1/T
I Only at contributes to signal A

⇡(st , at), but at+1, at+2, . . . contribute to
noise.



Variance Reduction with Discounts
I Discount factor �, 0 < � < 1, downweights the e↵ect of rewars that are far

in the future—ignore long term dependencies
I We can form an advantage estimator using the discounted return:

Â

�
t = rt + �rt+1 + �2

rt+2 + . . .| {z }
discounted return

�b(st)

reduces to our previous estimator when � = 1.
I So advantage has expectation zero, we should fit baseline to be discounted

value function

V

⇡,�(s) = E⌧

⇥
r0 + �r1 + �2

r2 + . . . | s0 = s

⇤

I Discount � is similar to using a horizon of 1/(1 � �) timesteps
I

Â

�
t is a biased estimator of the advantage function



Value Functions in the Future

I Baseline accounts for and removes the e↵ect of past actions

I Can also use the value function to estimate future rewards

rt + �V (st+1) cut o↵ at one timestep

rt + �rt+1 + �2
V (st+2) cut o↵ at two timesteps

. . .

rt + �rt+1 + �2
rt+2 + . . . 1 timesteps (no V )



Value Functions in the Future

I Subtracting out baselines, we get advantage estimators

Â

(1)
t = rt + �V (st+1)�V (st)

Â

(2)
t = rt + rt+1 + �2

V (st+2)�V (st)

. . .

Â

(1)
t = rt + �rt+1 + �2

rt+2 + . . . �V (st)

I
Â

(1)
t has low variance but high bias, Â

(1)
t has high variance but low bias.

I Using intermediate k (say, 20) gives an intermediate amount of bias and variance



Finite-Horizon Methods: Advantage Actor-Critic

I A2C / A3C uses this fixed-horizon advantage estimator

I Pseudocode

for iteration=1, 2, . . . do

Agent acts for T timesteps (e.g., T = 20),
For each timestep t, compute

R̂t = rt + �rt+1 + · · · + �T�t+1
rT�1 + �T�t

V (st)

Ât = R̂t � V (st)

R̂t is target value function, in regression problem
Ât is estimated advantage function

Compute loss gradient g = r✓
PT

t=1

h
� log ⇡✓(at | st)Ât + c(V (s) � R̂t)

2
i

g is plugged into a stochastic gradient descent variant, e.g., Adam.
end for

V. Mnih, A. P. Badia, M. Mirza, et al. “Asynchronous Methods for Deep Reinforcement Learning”. In: ICML (2016)
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h
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2
i
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end for

V. Mnih, A. P. Badia, M. Mirza, et al. “Asynchronous Methods for Deep Reinforcement Learning”. In: ICML (2016)



A3C Video



A3C Results



TD(�) Methods: Generalized Advantage Estimation
I Recall, finite-horizon advantage estimators

Â

(k)
t = rt + �rt+1 + · · · + �k�1

rt+k�1 + �k
V (st+k) � V (st)

I Define the TD error �t = rt + �V (st+1) � V (st)

I By a telescoping sum,

Â

(k)
t = �t + ��t+1 + · · · + �k�1�t+k�1

I Take exponentially weighted average of finite-horizon estimators:

Â

� = Â

(1)
t + �Â(2)

t + �2
Â

(3)
t + . . .

I We obtain

Â

�
t = �t + (��)�t+1 + (��)2�t+2 + . . .

I This scheme named generalized advantage estimation (GAE) in [1], though versions have
appeared earlier, e.g., [2]. Related to TD(�)

J. Schulman, P. Moritz, S. Levine, et al. “High-dimensional continuous control using generalized advantage estimation”. In: ICML. 2015

H. Kimura and S. Kobayashi. “An Analysis of Actor/Critic Algorithms Using Eligibility Traces: Reinforcement Learning with Imperfect Value
Function.” In: ICML. 1998, pp. 278–286



Choosing parameters �, �

Performance as �, � are varied



TRPO+GAE Video



Pathwise Derivative Policy Gradient Methods



Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)

I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈
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✓
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RT
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✓

s1 s2 . . . sT
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RT

I Only works if P(s2 | s1, a1) is known _̈



Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT ] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at ]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#



SVG(0) Algorithm

I Learn Q� to approximate Q

⇡,�, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do

Execute policy ⇡✓ to collect T timesteps of data
Update ⇡✓ using g / r✓

PT
t=1 Q(st , ⇡(st , zt ; ✓))

Update Q� using g / r�

PT
t=1(Q�(st , at) � Q̂t)2, e.g. with TD(�)

end for

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015
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SVG(1) Algorithm

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Instead of learning Q, we learn

I State-value function V ⇡ V

⇡,�

I Dynamics model f , approximating st+1 = f (st , at) + ⇣t

I Given transition (st , at , st+1), infer ⇣t = st+1 � f (st , at)

I
Q(st , at) = E [rt + �V (st+1)] = E [rt + �V (f (st , at) + ⇣t)], and at = ⇡(st , ✓, ⇣t)



SVG(1) Algorithm

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Just learn dynamics model f

I Given whole trajectory, infer all noise variables

I Freeze all policy and dynamics noise, di↵erentiate through entire deterministic
computation graph



SVG Results

I Applied to 2D robotics tasks

I Overall: di↵erent gradient estimators behave similarly

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015



Deterministic Policy Gradient

I For Gaussian actions, variance of score function policy gradient estimator goes to
infinity as variance goes to zero

I But SVG(0) gradient is fine when � ! 0

r✓

X

t

Q(st , ⇡(st , ✓, ⇣t))

I Problem: there’s no exploration.

I Solution: add noise to the policy, but estimate Q with TD(0), so it’s valid
o↵-policy

I Policy gradient is a little biased (even with Q = Q

⇡), but only because state
distribution is o↵—it gets the right gradient at every state

D. Silver, G. Lever, N. Heess, et al. “Deterministic policy gradient algorithms”. In: ICML. 2014



Deep Deterministic Policy Gradient
I Incorporate replay bu↵er and target network ideas from DQN for increased

stability

I Use lagged (Polyak-averaging) version of Q� and ⇡✓ for fitting Q� (towards
Q

⇡,�) with TD(0)

Q̂t = rt + �Q�0(st+1, ⇡(st+1; ✓
0))

I Pseudocode:

for iteration=1, 2, . . . do

Act for several timesteps, add data to replay bu↵er
Sample minibatch
Update ⇡✓ using g / r✓

PT
t=1 Q(st , ⇡(st , zt ; ✓))

Update Q� using g / r�

PT
t=1(Q�(st , at) � Q̂t)2,

end for

T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al. “Continuous control with deep reinforcement learning”. In: ICLR (2015)
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DDPG Results

Applied to 2D and 3D robotics tasks and driving with pixel input

T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al. “Continuous control with deep reinforcement learning”. In: ICLR (2015)



Policy Gradient Methods: Comparison

I Two kinds of policy gradient estimator
I REINFORCE / score function estimator: r log ⇡(a | s)Â.

I Learn Q or V for variance reduction, to estimate Â

I Pathwise derivative estimators (di↵erentiate wrt action)
I SVG(0) / DPG: d

daQ(s, a) (learn Q)
I SVG(1): d

da (r + �V (s 0)) (learn f ,V )
I SVG(1): d

dat
(rt + �rt+1 + �2

rt+2 + . . . ) (learn f )

I Pathwise derivative methods more sample-e�cient when they work (maybe),
but work less generally due to high bias



Policy Gradient Methods: Comparison

Y. Duan, X. Chen, R. Houthooft, et al. “Benchmarking Deep Reinforcement Learning for Continuous Control”. In: ICML (2016)



Stochastic Computation Graphs



Gradients of Expectations
Want to compute r✓E [F ]. Where’s ✓?

I In distribution, e.g., Ex⇠p(· | ✓) [F (x)]

I r✓Ex [f (x)] = Ex [f (x)r✓ log px(x ; ✓)] .
I Score function estimator
I Example: REINFORCE policy gradients, where x is the trajectory

I Outside distribution: Ez⇠N (0,1) [F (✓, z)]

r✓Ez [f (x(z , ✓))] = Ez [r✓f (x(z , ✓))] .

I Pathwise derivative estimator
I Example: SVG policy gradient

I Often, we can reparametrize, to change from one form to another

I What if F depends on ✓ in complicated way, a↵ecting distribution and F?

M. C. Fu. “Gradient estimation”. In: Handbooks in operations research and management science 13 (2006), pp. 575–616



Stochastic Computation Graphs

I Stochastic computation graph is a DAG, each node corresponds to a
deterministic or stochastic operation

I Can automatically derive unbiased gradient estimators, with variance
reduction

John Schulman1, Nicolas Heess2, Théophane Weber2, Pieter Abbeel1 
1University of California, Berkeley              2Google DeepMind

Generalize backpropagation to deal with random variables 
that we can’t differentiate through.  
Why can’t we differentiate through them?

Gradient Estimation Using Stochastic Computation Graphs

1) discrete random variables 
2) unmodeled external world, in RL / control

Computation Graphs Stochastic Computation Graphs

stochastic node

Motivation / Applications

policy gradients in 

reinforcement learning

variational inference

(hard) attention models

(hard) memory read/write

✓

s1 s2 . . . sT

a1 a2 . . . aT

r1 r2 . . . rT

distribution is different from the distribution we are evaluating: for parameter ✓ � �, ✓ = ✓old is
used for sampling, but we are evaluating at ✓ = ✓new.

Ev�c | ✓new
[ĉ] = Ev�c | ✓old

�

���ĉ
�

v�c,
✓�Dv

Pv(v | DEPSv\✓, ✓new)

Pv(v | DEPSv\✓, ✓old)

�

��� (17)

 Ev�c | ✓old

�

���ĉ

�

���log

�

���
�

v�c,
✓�Dv

Pv(v | DEPSv\✓, ✓new)

Pv(v | DEPSv\✓, ✓old)

�

��� + 1

�

���

�

��� (18)

where the second line used the inequality x � log x + 1, and the sign is reversed since ĉ is negative.
Summing over c � C and rearranging we get

ES | ✓new

"
X

c�C
ĉ

#
 ES | ✓old

"
X

c�C
ĉ +

X

v�S
log

�
p(v | DEPSv\✓, ✓new)

p(v | DEPSv\✓, ✓old)

�
ˆQv

#
(19)

= ES | ✓old

"
X

v�S
log p(v | DEPSv\✓, ✓new)

ˆQv

#
+ const (20)

Equation (20) allows for majorization-minimization algorithms (like the EM algorithm) to be used
to optimize with respect to ✓. In fact, similar equations have been derived by interpreting rewards
(negative costs) as probabilities, and then taking the variational lower bound on log-probability (e.g.,
[24]).

C Examples
C.1 Generalized EM Algorithm and Variational Inference.

The generalized EM algorithm maximizes likelihood in a probabilistic model with latent variables
[18]. Suppose the probabilistic model defines a probability distribution p(x, z; ✓) where x is ob-
served, z is a latent variable, and ✓ is a parameter of the distribution. The generalized EM algorithm
maximizes the variational lower bound, which is defined by an expectation over q:

L(✓, q) = Ez�q


log

�
p(x, z; ✓)

q(z)

��
. (21)

The generalized EM algorithm can take many different forms, leading to different gradient estima-
tion problems.

x h1 h2 h3

r1 r2 r3

�1 �2 �3

✓1 ✓2 ✓3

Neural variational inference. [14] propose a general-
ized EM algorithm for multi-layered latent variable mod-
els such as sigmoidal belief networks that employs an in-
ference network, an explicit parameterization of q as a
function of the observed data x, to allow for fast approx-
imate inference. The generative model and inference net-
work take the form

p✓(x) =

X

h1,h2

p✓1(x|h1)p✓2(h1|h2)p✓3(h2)

q�(h1, h2|x) = q�1(h1|x)q�2(h2|h1),

and thus

L(✓,�) = Eh�q�

�

����
log

p✓1(x|h1)

q�1(h1|x)

| {z }
=r1

+ log

p✓2(h1|h2)p✓3(h2)

q�2(h2|h1)| {z }
=r2

�

����
.

11

x h1 . . . hN Generative model

x h1 . . . hN Inference model

Figure 1: Stochastic Feedforward Neural Networks. Left: Network diagram. Red nodes are stochastic and
binary, while the rest of the hiddens are deterministic sigmoid nodes. Right: motivation as to why multimodal
outputs are needed. Given the top half of the face x, the mouth in y can be different, leading to different
expressions.

the mean-field approximation was proposed in [4] to improve the learning of SBNs. A drawback
of the variational approach is that, similar to Gibbs, it has to cycle through the hidden nodes one
at a time. Moreover, beside the standard mean-field variational parameters, additional parameters
must be introduced to lower-bound an intractable term that shows up in the expected free energy,
making the lower-bound looser. Gaussian fields are used in [5] for inference by making Gaussian
approximations to units’ input, but there is no longer a lower bound on the likelihood.

In this paper, we introduce the Stochastic Feedforward Neural Network (SFNN) for modeling con-
ditional distributions p(y|x) over continuous real-valued Y output space. Unlike SBNs, to better
model continuous data, SFNNs have hidden layers with both stochastic and deterministic units. The
left panel of Fig. 1 shows a diagram of SFNNs with multiple hidden layers. Given an input vector x,
different states of the stochastic units can generates different modes in Y . For learning, we present
a novel Monte Carlo variant of the Generalized Expectation Maximization algorithm. Importance
sampling is used for the E-step for inference, while error backpropagation is used by the M-step
to improve a variational lower bound on the data log-likelihood. SFNNs have several attractive
properties, including:
• We can draw samples from the exact model distribution without resorting to MCMC.
• Stochastic units form a distributed code to represent an exponential number of mixture compo-

nents in output space.
• As a directed model, learning does not need to deal with a global partition function.
• Combination of stochastic and deterministic hidden units can be jointly trained using the back-

propagation algorithm, as in standard feed-forward neural networks.

The two main alternative models are Conditional Gaussian Restricted Boltzmann Machines (C-
GRBMs) [6] and Mixture Density Networks (MDNs) [1]. Note that Gaussian Processes [7] and
Gaussian Random Fields [8] are unimodal and therefore incapable of modeling a multimodal Y .
Conditional Random Fields [9] are widely used in NLP and vision, but often assume Y to be dis-
crete rather than continuous. C-GRBMs are popular models used for human motion modeling [6],
structured prediction [10], and as a higher-order potential in image segmentation [11]. While C-
GRBMs have the advantage of exact inference, they are energy based models that define different
partition functions for different input X . Learning also requires Gibbs sampling which is prone to
poor mixing. MDNs use a mixture of Gaussians to represent the output Y . The components’ means,
mixing proportions, and the output variances are all predicted by a MLP conditioned on X . As with
SFNNs, the backpropagation algorithm can be used to train MDNs efficiently. However, the number
of mixture components in the output Y space must be pre-specified and the number of parameters is
linear in the number of mixture components. In contrast, with Nh stochastic hidden nodes, SFNNs
can use its distributed representation to model up to 2

Nh mixture components in the output Y .

2 Stochastic Feedforward Neural Networks
SFNNs contain binary stochastic hidden variables h � {0, 1}Nh , where Nh is the number of hidden
nodes. For clarity of presentation, we construct a SFNN from a one-hidden-layer MLP by replacing
the sigmoid nodes with stochastic binary ones. Note that other types stochastic units can also be
used. The conditional distribution of interest, p(y|x), is obtained by marginalizing out the latent
stochastic hidden variables: p(y|x) =

P
h p(y,h|x). SFNNs are directed graphical models where

the generative process starts from x, flows through h, and then generates output y. Thus, we can
factorize the joint distribution as: p(y,h|x) = p(y|h)p(h|x). To model real-valued y, we have

2

Amortized inference:

stochastic neural networks

it’s all about gradients of expectations!
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Just Differentiate the “Surrogate” Function
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Under certain conditions, surrogate is a lower bound on expected 
cost, related to variational lower bound. See Appendix C

Equivalently, use backprop, but introduce terms 
∇logp(x) * (sum of downstream costs)  
at stochastic nodes. See Algorithm 1 in paper.
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Two Flavors of Gradient Estimation
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2.3 Simple Examples

Several simple examples that illustrate the stochastic computation graph formalism are shown below.
The gradient estimators can be described by writing the expectations as integrals and differentiating,
as with the simpler estimators from Section 2.1. However, they are also implied by the general
results that we will present in Section 3.

Stochastic Computation Graph Objective Gradient Estimator
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Figure 1: Simple stochastic computation graphs

These simple examples illustrate several important motifs, where stochastic and deterministic nodes
are arranged in series or in parallel. For example, note that in (2) the derivative of y does not appear
in the estimator, since the path from ✓ to f is “blocked” by x. Similarly, in (3), p(y | x) does not
appear (this type of behavior is particularly useful if we only have access to a simulator of a system,
but not access to the actual likelihood function). On the other hand, (4) has a direct path from ✓ to
f , which contributes a term to the gradient estimator. (5) resembles a parameterized Markov reward
process, and it illustrates that we’ll obtain score function terms of the form grad log-probability �
future costs.

x h
1

h
2

W
1

W
2

b
1

b
2

soft-
max

y=label

cross-
entropy
loss

The examples above all have one input ✓, but the formal-
ism accommodates models with multiple inputs, for ex-
ample a stochastic neural network with multiple layers of
weights and biases, which may influence different sub-
sets of the stochastic and cost nodes. See Appendix C
for nontrivial examples with stochastic nodes and multi-
ple inputs. The figure on the right shows a deterministic
computation graph representing classification loss for a two-layer neural network, which has four
parameters (W1, b1, W2, b2) (weights and biases). Of course, this deterministic computation graph
is a special type of stochastic computation graph.
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Why’s it useful?  
1) no need to  rederive every time  
2) enable generic software
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Worked Example

Conclusions

- We generalize computation graph formalism to allow for 
stochastic nodes that “block” derivative propagation 

- We generalize “baseline” (from policy gradient lit.) so it 
depends on all non-descendants of stochastic node 

- Gradient estimator can be computed with modification of 
backpropagation algorithm 

- Automatically reproduce estimators from previous work
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J. Schulman, N. Heess, T. Weber, et al. “Gradient Estimation Using Stochastic Computation Graphs”. In: NIPS. 2015



Worked Example
a

d

cb

e

θ

φ

I
L = c + e. Want to compute d

d✓ E [L] and d
d�E [L].

I Treat stochastic nodes (b, d) as constants, and introduce losses logprob ⇤ (futurecost) at
each stochastic node

I Obtain unbiased gradient estimate by di↵erentiating surrogate:

Surrogate(✓, ) = c + e| {z }
(1)

+ log p(b̂ | a, d)ĉ| {z }
(2)

(1): how parameters influence cost through deterministic dependencies

(2): how parameters a↵ect distribution over random variables.



n  DerivaMve	free	methods	

n  Cross	Entropy	Method	(CEM)	/	Finite	Differences	/	Fixing	Random	Seed	

n  Likelihood	RaMo	(LR)	Policy	Gradient	

n  DerivaMon	/	ConnecMon	w/Importance	Sampling	

n  Natural	Gradient	/	Trust	Regions	(->	TRPO)	

n  Variance	ReducMon	using	Value	FuncMons	(Actor-CriMc)	(->	GAE,	A3C)	

n  Pathwise	DerivaMves	(PD)		(->	DPG,	DDPG,	SVG)	

n  StochasMc	ComputaMon	Graphs	(generalizes	LR	/	PD)	

n  Guided	Policy	Search	(GPS)	

n  Inverse	Reinforcement	Learning	

Outline		



n  Find	parameterized	policy																				that	opMmizes:	

n  NotaMon:		

n  RL	takes	lots	of	data…	Can	we	reduce	to	supervised	learning?	

Goal	
⇡✓(ut|xt)

J(✓) =
TX

t=1

E⇡✓(xt,ut)[l(xt,ut)]

⇡✓(⌧) = p(x1)
TY

t=1

p(xt+1|xt,ut)⇡✓(ut|xt)

⌧ = {x1,u1, . . . ,xT ,uT }

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  Step	1:	
n  Consider	sampled	problem	instances		

n  Find	a	trajectory-centric	controller																					for	each	problem	instance		

n  Step	2:	
n  Supervised	training	of	neural	net	to	match	all		

n  ISSUES:	
n  Compounding	error	(Ross,	Gordon,	Bagnell	JMLR	2011	“Dagger”)	

n  Mismatch	train	vs.	test			E.g.,	Blind	peg,	Vision,…	

Naïve	SoluMon	

⇡i(ut|xt)

i = 1, 2, . . . , I

⇡i(ut|xt)

⇡✓  argmin
✓

X

i

DKL(pi(⌧)||⇡✓(⌧))

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  OpMmizaMon	formulaMon:	

(Generic)	Guided	Policy	Search	

ParMcular	form	of	the	constraint	varies	depending	on	the	specific	method:	
Dual	gradient	descent:	Levine	and	Abbeel,	NIPS	2014	
Penalty	methods:	Mordatch,	Lowrey,	Andrew,	Popovic,	Todorov,	NIPS	2016	
ADMM:	Mordatch	and	Todorov,	RSS	2014	
Bregman	ADMM:	Levine,	Finn,	Darrell,	Abbeel,	JMLR	2016	
Mirror	Descent:	Montgomery,	Levine,	NIPS	2016	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



[Levine	&	Abbeel,	NIPS	2014]	 John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



[Levine	&	Abbeel,	NIPS	2014]	 John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



Comparison	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	[Levine,	Wagener,	Abbeel,	ICRA	2015]	



Block	Stacking	–	Learning	the	Controller	for	a	Single	Instance	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	[Levine,	Wagener,	Abbeel,	ICRA	2015]	



Linear-Gaussian	Controller	Learning	Curves	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	[Levine,	Wagener,	Abbeel,	ICRA	2015]	



Instrumented Training 
training time test time 

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	[Levine*,	Finn*,	Darrell,	Abbeel,	JMLR	2016	



Architecture	(92,000	parameters)	

[Levine*,	Finn*,	Darrell,	Abbeel,	JMLR	2016	 John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



Experimental Tasks 

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	[Levine*,	Finn*,	Darrell,	Abbeel,	JMLR	2016	



Learning	

[Levine*,	Finn*,	Darrell,	Abbeel,	JMLR	2016	 John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



Learned	Skills	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	[Levine*,	Finn*,	Darrell,	Abbeel,	JMLR	2016	



n  Uses	PI2	(rather	than	iLQG)	as	the	trajectory	opMmizer	
n  In	these	experiments:	

n  PI2	opMmizes	over	sequence	of	linear	feedback	controllers	
n  PI2	iniMalized	from	demonstraMons	

n  Neural	net	architecture:	

PI-GPS	

[Chebotar,	Kalakrishnan,	Yahya,	Li,	Schaal,	Levine,	arXiv	2016]	 John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  DerivaMve	free	methods	

n  Cross	Entropy	Method	(CEM)	/	Finite	Differences	/	Fixing	Random	Seed	

n  Likelihood	RaMo	(LR)	Policy	Gradient	

n  DerivaMon	/	ConnecMon	w/Importance	Sampling	

n  Natural	Gradient	/	Trust	Regions	(->	TRPO)	

n  Actor-CriMc																			(->	GAE,	A3C)	

n  Path	DerivaMves	(PD)		(->	DPG,	DDPG,	SVG)	

n  StochasMc	ComputaMon	Graphs	(generalizes	LR	/	PD)	

n  Guided	Policy	Search	(GPS)	

n  Current	Fron'ers	

Outline		

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  Off-policy	Policy	Gradients	/	Off-policy	Actor	CriMc	/	Connect	with	Q-Learning	
n  DDPG	[Lillicrap	et	al,	2015];	Q-prop	[Gu	et	al,	2016];	Doubly	Robust	[Dudik	et	al,	2011],	…	

n  PGQ	[O’Donoghue	et	al,	2016];	ACER	[Wang	et	al,	2016];	Q(lambda)	[Harutyunyan	et	al,	2016];	Retrace(lambda)	[Munos	et	al,	
2016]…	

n  ExploraMon	
n  VIME	[HouthooQ	et	al,	2016];	Count-Based	ExploraMon	[Bellemare	et	al,	2016];	#ExploraMon	[Tang	et	al,	2016];	Curiosity	

[Schmidhueber,	1991];	…	

n  Auxiliary	objecMves	
n  Learning	to	Navigate	[Mirowski	et	al,	2016];	RL	with	Unsupervised	Auxiliary	Tasks	[Jaderberg	et	al,	2016],	…	

n  MulM-task	and	transfer	(incl.	sim2real)	
n  DeepDriving	[Chen	et	al,	2015];	Progressive	Nets	[Rusu	et	al,	2016];	Flight	without	a	Real	Image	[Sadeghi	&	Levine,	2016];	

Sim2Real	Visuomotor	[Tzeng	et	al,	2016];	Sim2Real	Inverse	Dynamics	[ChrisMano	et	al,	2016];	Modular	NNs	[Devin*,	Gupta*,	
et	al	2016]	

n  Language	
n  Learning	to	Communicate	[Foerster	et	al,	2016];	MulMtask	RL	w/Policy	Sketches	[Andreas	et	al,	2016];	Learning	Language	

through	InteracMon	[Wang	et	al,	2016]	

Current	FronMers	(+pointers	to	some	representaMve	recent	work)	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  Meta-RL	

n  RL2:	Fast	RL	through	Slow	RL	[Duan	et	al.,	2016];	Learning	to	Reinforcement	Learn	[Wang	et	al,	2016];	Learning	to	Experiment	[Denil	et	al,	2016];		
Learning	to	Learn	for	Black-Box	Opt.	[Chen	et	al,	2016],	…	

n  24/7	Data	CollecMon	

n  Learning	to	Grasp	from	50K	Tries	[Pinto&Gupta,	2015];	Learning	Hand-Eye	CoordinaMon	[Levine	et	al,	2016];	Learning	to	Poke	by	Poking	[Agrawal	et	
al,	2016]	

n  Safety	

n  Survey:	Garcia	and	Fernandez,	JMLR	2015	

n  Architectures	

n  Memory,	AcMve	PercepMon	in	MinecraQ	[Oh	et	al,	2016];	DRQN	[Hausknecht&Stone,	2015];	Dueling	Networks	[Wang	et	al,	2016];	…	

n  Inverse	RL	

n  GeneraMve	Adversarial	ImitaMon	Learning	[Ho	et	al,	2016];	Guided	Cost	Learning	[Finn	et	al,	2016];	MaxEnt	Deep	RL	[Wulfmeier	et	al,	2016];	…	

n  Model-based	RL	

n  Deep	Visual	Foresight	[Finn	&	Levine,	2016];	Embed	to	Control	[WaBer	et	al.,	2015];	SpaMal	Autoencoders	Visuomotor	Learning	[Finn	et	al,	2015];	PILCO	[Deisenroth	et	al,	
2015]	

n  Hierarchical	RL	

n  Modulated	Locomotor	Controllers	[Heess	et	al,	2016];	STRAW	[Vezhnevets	et	al,	2016];	OpMon-CriMc	[Bacon	et	al,	2016];	h-DQN	[Kulkarni	et	al,	
2016];	Hierarchical	Lifelong	Learning	in	MinecraQ	[Tessler	et	al,	2016]	

	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	

Current	FronMers	(+pointers	to	some	representaMve	recent	work)	



How	to	Learn	More	and	Get	Started?		

n  (1)	Deep	RL	Courses	
n  CS294-112	Deep	Reinforcement	Learning	(UC	Berkeley):	

hBp://rll.berkeley.edu/deeprlcourse/	by	Sergey	Levine,	John	Schulman,	Chelsea	
Finn	

n  COMPM050/COMPGI13	Reinforcement	Learning	(UCL):	
hBp://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html	by	David	Silver	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	



n  (2)	Deep	RL	Code	Bases	
n  rllab:	hBps://github.com/openai/rllab			

Duan,	Chen,	HouthooQ,	Schulman	et	al	

		

	

n  Rlpy:	
hBps://rlpy.readthedocs.io/en/latest/	
Geramifard,	Klein,	Dann,	Dabney,	How	

How	to	Learn	More	and	Get	Started?	
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n  GPS:	hBp://rll.berkeley.edu/gps/	
Finn,	Zhang,	Fu,	Tan,	McCarthy,	
Scharff,	Stadie,	Levine	



	

n  Deepmind	Lab	/	Labyrinth	(Deepmind)	

	

n  OpenAI	Gym:	hBps://gym.openai.com/	

n  Universe:	hBps://universe.openai.com/	

How	to	Learn	More	and	Get	Started?	
n  (3)	Environments	

n  Arcade	Learning	Environment	(ALE)	
(Bellemare	et	al,	JAIR	2013)	

n  MuJoCo:		hBp://mujoco.org	(Todorov)	

n  MinecraO	(MicrosoQ)	

…	
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A	so:ware	pla<orm	for	measuring	and	training	an	AI's	general	
intelligence	across	the	world's	supply	of	games,	websites	and	other	

applica2ons.	

	

Universe	
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Universe	--	Games	

hBps://universe.openai.com	

Release	consists	of	a	thousand	environments	including	Flash	games,	browser	tasks,	
and	games	like	slither.io,	StarCraQ	and	GTA	V.	
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Universe	–	World	of	Bits	(WoB):	“Mini-WoB”	
AI	follows	instrucMons	
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Universe	–	World	of	Bits:	Real	Browser	Tasks	
AI	books	plane	Mckets		
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Universe	–	World	of	Bits:	EducaMonal	Games	
AI	goes	to	school	J	
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n  OpportuniMes:	

n  Train	agents	on	Universe	tasks.		

n  Grant	us	permission	to	use	your	game,	program,	website,	or	app	

n  Integrate	new	environments.	

n  Contribute	demonstraMons.	

Universe	
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n  DerivaMve	free	methods	

n  Cross	Entropy	Method	(CEM)	/	Finite	Differences	/	Fixing	Random	Seed	

n  Likelihood	RaMo	(LR)	Policy	Gradient	

n  DerivaMon	/	ConnecMon	w/Importance	Sampling	

n  Natural	Gradient	/	Trust	Regions	(->	TRPO)	

n  Actor-CriMc																			(->	GAE,	A3C)	

n  Path	DerivaMves	(PD)		(->	DPG,	DDPG,	SVG)	

n  StochasMc	ComputaMon	Graphs	(generalizes	LR	/	PD)	

n  Guided	Policy	Search	(GPS)	

n  Current	FronMers	

Summary	
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