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My Objectives
Get you to

* Know what probabilistic program is and how it's different
to a normal program.

* Roughly understand how to write a probabilistic program
and have the resources to get started if you want to.

* Understand the literature at a very high level.

 Know one way to roll your own state-of-the-art universal
probabilistic programming system.



What Is probabilistic
orogramming’?
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A Probabilistic Program

“Probabilistic programs are usual functional or
imperative programs with two added constructs:

(1) the ability to draw values at random from
distributions, and

(2) the ability to condition values of variables in a
program via observations.”

Gordon, Henzinger, Nori, and Rajamani
“Probabilistic programming.” In Proceedings of On The Future of Software Engineering (2014).



Goals of the Field



Lines of Anglican Code

Increase Programmer Productivity
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Object Tracking, [Neiswanger et al 2014]

Automata Induction [Pfau et al 2010]

DP Conjugate Mixture HPYF, [Teh 2006]
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Commodify Inference

Models / Simulators

Inference engines



New Kinds of Models

x)p(x
plxly) = PV i
X Yy
program source code program output
scene description image
policy and world rewards
cognitive process behavior

simulation constraint
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Success Stories

Graphical Models Factor Graphs

r @

BUGS STAN Factorie Infer.NET




BUGS

model {
x (a, 1/b)
for (i in 1:N) {
y[i]l ~ (x, 1/¢)
+
+

* Language restrictions

* Bounded loops

* No branching
* Model class

* Finite graphical models
* [nference - sampling

* Gibbs

(=) @

15

Spiegelhalter et al. "BUGS: Bayesian inference using Gibbs sampling, Version 0.50." Cambridge 1995.



STAN : Finite Dimensional Differentiable Distributions

parameters {
real xs[T];

+
model {
xs[1] = normal(0.0, 1.0);
for (t in 2:T)
xs[t] ~ normal(a * xs[t - 1], q); —  Vx logp(x, Y)
for (t in 1:T)
ys[t] ~ normal(xs[t], 1.0);
+

Language restrictions

Bounded loops
No discrete random variables

Model class

Finite dimensional differentiable distributions

Inference - sampling

Hamiltonian Monte Carlo
 Reverse-mode automatic differentiation
Black box variational inference, etc.

STAN Development Team "Stan: A C++ Library for Probability and Sampling." 2014.
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—actorie and Infer.NET

* Language restrictions
* Finite compositions of factors
* Model class
* Finite factor graphs
* Inference - message passing, etc.

févl,fEQ f$2,$3
f:}c Yy f$27y2 fo Y
|| | |
TrueSkill CRF
Minka, Winn, Guiver, and Knowles "Infer .NET 2.4, Microsoft Research Cambridge." 2010. 17

McCallum, Schultz, and Singh. “Factorie Probabilistic programming via imperatively defined factor graphs.”“ NIPS 2009



Modeling language desiderata

Unrestricted

« “Open-universe” / infinite dim. parameter spaces
 Mixed variable types

Unfettered access to existing libraries

Easily extensible

Will come at a cost
* Inference is going to be harder

* More ways to shoot yourself in the foot



Languages and Systems
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What people are doing with these languages

X Yy
program source code program output
scene description image
policy and world rewards
cognitive process behavior

simulation constraint



Captcha Solving
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Perception / Inverse Graphics

Scene Description
X

Inferred
(reconstruction)
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U
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Inferred model
re-rendered with
novel lighting

Inferred model
re-rendered with
novel poses

scene description

Mansinghka,, Kulkarni, Perov, and Tenenbaum.
'Approximate Bayesian image interpretation using

generative probabilistic graphics programs." NIPS (2013).

Kulkarni, Kohli, Tenenbaum, Mansinghka
"Picture: a probabilistic programming language for

scene perception." CVPR (2015). 21



Reinforcement Learning

X Yy
policy and world reward
Wingate, Goodman, Roy, Kaelbling, and Tenenbaum. van de Meent, Tolpin, Paige, and Wood.
"Bayesian policy search with policy priors." "Black-Box Policy Search with Probabilistic Programs."

(IJCAI), 2011. arXiv:1507.04635 (2015). 22



Reasoning about reasoning

Want to meet up but phones are dead...

| prefer the pub.
Where will Noah go?
Simulate Noah:
Noah prefers pub
but will go wherever Andreas is
Simulate Noah simulating Andreas:

-> both go to pub

cognitive process behavior

Stuhimuller, and Goodman.
"Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs.”
Cognitive Systems Research 28 (2014): 80-99. o3



Program Induction
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G 1147 (safe-uc 1.0 1.0)) 0.8)) (* 0.0 (+ 0.0 (safe-uc (* (* (dec -2 X v p(be)
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0.0)))) 1.0)) (+ (safe-div (begin (define G_ 1149 (* (+ 3.14159 -1.0)
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X ~ p(x)

program source code program output

Perov and Wood.
"Learning Probabilistic Programs.”

arXiv:1407.2646 (2014). 24



Constrained Stochastic Simulation

Stable Static Structures

Procedural Graphics

simulation

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

constraint

Ritchie, Lin, Goodman, & Hanrahan.
Generating Design Suggestions under Tight Constraints
with Gradient-based Probabilistic Programming.

In Computer Graphics Forum, (2015)

Ritchie, Mildenhall, Goodman, & Hanrahan.
“Controlling Procedural Modeling Programs with
Stochastically-Ordered Sequential Monte Carlo.” 25

SIGGRAPH (2015)



Universal
Probabilistic Programming
Modeling Language



Introduction to
Anglican

@



Interpreted

A Language Family Tree

Church

Interpreted Anglican<— VentureScript

Probabilistic-C

WebPPL<> Anglican :

HE - i
lisp javascript Clojure ¢

Inspiration —>

Modeling language —»
Compiled 28



Syntax : Anglican = Clojure = Church = Lisp

* Notation : Prefix vs. infix

;; Add two numbers
(+ 1 1)

-, Subtract: "10 - 3"
(- 10 3)

;5 (10 * (2.1 + 4.3) / 2)
(/ (* 10 (+ 2.1 4.3)) 2)

29



Syntax

* Notation : Prefix vs. infix

*Branching

;; Add two numbers
(+ 1 1)

;. Subtract: "10 - 3"
(- 10 3)

;5 (10 * (2.1 + 4.3) / 2)
(/ (* 10 (+ 2.1 4.3)) 2)

;5 outputs 4
(+ (if (¢ 4 5) 1 2) 3)

30



e Functions are first class

((fn [x y] (
10
2)

(

—unctions

x 3) y))

31



-unctions
*Functions are first class

;; evaluates to 32

((fn [x y]1 (+ (* x 3) v))
10
2)

*[_ocal bindings

;5 let 15 syntactic "sugar" for the same
(let [x 10
y 2]
(+ (* x 3) v))

32



*map

reduce

Higher-Order

;5 Apply the function f(xz,y) = x + 2y to the
;5 ¢ values [1 2 3] and the y wvalues [10 9 8]
;7 Produces [21 20 19]
(map (fn [x y] (+ x (* 2 y)))
[1 2 3] ; these are values z1, =2, z3
[10 9 8]) ; these are walues y1, y2, y3

;5 Reduce recursively applies function,
;, to result and next element, 1.e.
(reduce + 0 [1 2 3 4])

;; does (+ (+ (+ 0 1) 2)

;» and evaluates to 10

33



Anglican By Example : Graphical Model

(defquery gaussian-model [data]
(let [x (sample (normal 1 (sqrt 5))) va}VOrnuﬂ(l,V@ﬁ
( (fn [y] (observe (normal x sigma) y)) data)
(predict :x x)))



Graphical Model

(defquery gaussian-model [data]
(let [x (sample (normal 1 (sqrt 5))) xrv}Vornuﬂ(l,v@h
Slgma (Sqrt 2) ] . yzlx ~U Normal(x7 \/i)
(map (fn [y] (observe (normal x sigma) y)) data)
(predict :x x)))

(def dataset [9 8]) y1=9,ys = 8



Graphical Model

(defquery gaussian-model [data]
(let [x (sample (normal 1 (sqrt 5))) xrw}Vornuﬂ(l,v@D
Slgma (Sqrt 2) ] . yzlx ~U Normal(a’;7 \/i)
(map (fn [y] (observe (normal x sigma) y)) data)
(predict :x x)))

(def dataset [9 8]) y1=9,ys = 8

(def posterior
((conditional gaussian-model

: pgibbs x|y ~ Normal(7.25,0.91)
:number-of-particles 1000) dataset))



Graphical Model

(defquery gaussian-model [data]
(let [x (sample (normal 1 (sqrt 5))) xrw}Vornuﬂ(l,v@D
Slgma (Sqrt 2) ] . yzla’; ~U Normal(a’;7 \/i)
(map (fn [y] (observe (normal x sigma) y)) data)
(predict :x x)))

(def dataset [9 8]) y1=9,ys = 8

(def posterior
((conditional gaussian-model

: pgibbs x|y ~ Normal(7.25,0.91)
:number-of-particles 1000) dataset))

(def posterior-samples
(repeatedly 20000 #(sample posterior)))




Anglican : Syntax = Clojure, Semantics = Clojure

[ ]

sigma (sqrt 2)]
(map (fn [y] (observe (normal x sigma) y)) data)
(predict :x x)))

(let [x (sample (normal 1 (sqrt 5))) (29

@,



(defquery sprinkler-bayes-net
(let [cloudy (sample (flip 0.5))

BSayes Net

raining (sample (if cloudy
(flip 0.8)
(flip 0.2)))
w
sprinkler-dist (if cloudy
c P(R—T) P(R—F) (fllp 0. 1)

‘///, : (flip 0.5))
sprinkler true

_ (observe sprinkler-dist sprinkler)

c |ps=n) eis=n) wetgrass-dist (cond (and (= sprinkler true)
F | 05 05 @ s R |PW=T) P(W=F) (= raining true))
Torl o o (flip 0.99)
FoF| o0 10 (and (= sprinkler false)
(= raining false),
(f1ip 0.00)

(or (= sprinkler true)
(= raining  true))
(f1lip 0.90))
wetgrass true
_ (observe wetgrass-dist wetgrass)]

(predict :cloudy cloudy)
(predict :raining raining)
(predict :wetgrass wetgrass)))



One Hidden Markov Model
(defquery hmm (o)) ——>(r——(s)

(let [init-dist (discrete [1 1 1])
trans-dist (fn [s]
(cond @ @ @
(= s 0) (discrete [0 1 1])
(= s 1) (discrete [0 O 1])
(= s 2) (dirac 2)))
obs-dist (fn [s] (normal s 1))
y-11
y-2 1
x-0 (sample init-dist)
x-1 (sample (trans-dist x-0))
x-2 (sample (trans-dist x-1))]

(observe (obs-dist x-1) y-1)
(observe (obs-dist x-2) y-2)
(predict :x-0 x-0)

(predict :x-1 x-1)

(predict :x-2 x-2)))



All Hidden Markov Models

(defquery hmm
[ys init-dist trans-dists obs-dists]

(predict
' X
(reduce
(fn [xs vy]
(let [x (sample ( trans-dists ( xs))) ]
(observe ( obs-dists x) y)
( xs x)))
[(sample init-dist)]
ys)))

T



An Unbounded Recursion

(defquery geometric [p]
"geometric distribution"
(let [dist (flip p)
samp (loop [n 0]
(if (sample dist)
n

(recur (+ n 1))))]
(predict :x samp)))

10_I I I I I I_
o p=0.2
P 1-p , 5 |




Deterministic Simulation

(defquery arrange-bumpers []
(let [bumper-positions []

world (create-world bumper-positions)
end-world (simulate-world world)
balls ( end-world)

num-balls-in-box (balls-in-box end-world) ]

(predict balls)
(predict num-balls-in-box)
(predict bumper-positions)))

goal: “world” that puts ~20% of balls in box...



Stochastic Simulation

(let [number-of-bumpers (sample (poisson 20))
bumpydist (uniform-continuous 0 10)
bumpxdist (uniform-continuous -5 14)
bumper-positions (repeatedly
number-of-bumpers
# ( (sample bumpxdist)
(sample bumpydist))




Constrained Stochastic Simulation

obs-dist (normal 4 0.1)]

(observe obs-dist num-balls-in-box)




A Hard Inference Problem

(defquery md5-inverse [L md5str]
"conditional distribution of strings
that map to the same MD5 hashed string”
(let [mesg (sample (string-generative-model L1L))]
(observe (dirac md5str) (md5 mesg))
(predict :message mesg))))




An Inference Framework
For Universal Probabilistic
Programming Languages



The Gist

Explore as many “traces” as possible, intelligently

* Each trace contains all random choices made
during the execution of a generative model

Compute trace “goodness” (probability) as side-effect
Combine weighted traces probabilistically coherently
Report projection of posterior over traces

48



Traces

(poisson 7)

oO—©

(let [t-1 3 -
x-1 (sample (discrete (repeat t-1 1)))]
(i1f (not= x-1 1)
(let [t-2 (+ x-1 7)
X-2 (sample (poisson t-2))])))



Goodness of Trace .
o —
(normpdf 1 1 0.0001)

(normpdf 2 1 0.0001)

xzzz‘ ﬁ

33‘2:0

(poisson 7)

Tro =

(discrete (1 1 1))

(normpdf 2 1 0.0001)

o el

(poisson 9) 41 (normpdf 1 1 0.0001)

0o o<s0 —

LUQZO
\ (normpdf 0 1 0.0001)

* ——»

(let [t-1 3 ;
x-1 (sample (discrete (repeat t-1 1)))]
(1f (not= x-1 1)
(let [t-2 (+ x-1 7)
Xx-2 (sample (poisson t-2))]
(observe (gaussian x-2 0.0001) 1))))



race

Sequence of N observe’s
{(gi> D ys) iy
Sequence of M sample’s
{(f5,0)}iL,
Sequence of M sampled values

{z; }j\g

Conditioned on these sampled values the entire computation
IS deterministic



race Probability

* Defined as (up to a normalization constant)

N M
v(x) £ p(x,y) = Hgi(yz‘\ﬁbz‘) H fi(z;10;)

 Hides true dependency structure

¥(x)

p(X,y)

N

~ T aitxa) (u

1=1

etc



Inference Goal

* Posterior over traces

v(x)

n(x) £ p(xly) = 1= Z = p(y)

e Qutput

Bl:) = EIQ)] = [ Qo)r(x)dx

]
N =
—
©
b



Three Base Algorithms
e Likelihood Weighting

e Seqguential Monte Carlo

 Metropolis Hastings



Likelihnood Weighting

 Run K independent copies of program simulating from
the prior

k :Mk (k| gk
o) =TT 5100

* Accumulate unnormalized weights (likelihoods)

wxt) = 250 = [Tkt 1oh

* Use in approximate (Monte Carlo) integration

w(xF)

Wk =
K
D g w(xF) —

BLOG default inference engine:
ianlogic.qgithub.i




Likelihood Weighting Schematic

°—o 0o o— 2w

0—»0\0—>0\0—> 2w



Sequential Monte Carlo

~

e Notation X1 = X1 X -0 X Xy

X1 X2

— -~ A ~ clc

* |ncrementalized joint

N
fyn(f(l:n) — Hg(yn’iln)p(inbzln—l)

n=1

e [ncrementalized target

. 1 5
Tn (Xlzn) = 5 In (Xlzn)

Zn



SMC for Probabilistic Programming

Want samples from

Tn (ilzn) X p(yn ‘iln)p(f{n ’}zl:n—l)ﬂ-n—l (ilzn—l)



SMC for Probabilistic Programming

Want samples from

Tn (ilzn) X p(yn ‘iln)p(f{n ’il:n—l)ﬂ-n—l (}Nclzn—l)

Have a sample-based approximation to

7Tn 1 Xln 1 E X1n . X1:n—1)



SMC for Probabilistic Programming

Want samples from

Tn (ilzn) X p(yn ‘iln)p(f{n ’il:n—l)ﬂ-n—l (}Nclzn—l)

Have a sample-based approximation to

7Tn 1 Xln 1 E 5len . X1:n—1)

Sample from
~a?’2_1 ~ ~ ~k an_1
X1 ~ Tn-1(X1m-1) X | X1 ™ (Xn|X1 n— 1)



SMC for Probabilistic Programming

Want samples from

Tn (ilzn) X p(yn ‘iln)p(f{n ’il:n—l)ﬂ-n—l (}Nclzn—l)

Have a sample-based approximation to

Tn—1 Xln 1 Z 5len 1(X1:n—1)

Sample from

San_y .o k|1 = o1

Xy ~ Tne1(Xim—1) X [ X1 1 ~ P(Xn|X5 1)

k
Xl = X1 X Xy
Importance weight by
Sk
. Wk & w(Xy,,)
w(xl ) (yn|X1 n) — gn(yn|X1 n) " Zk:’ 1 w(Xl n)

Wood, van de Meent, and Mansinghka “A New Approach to Probabilistic Programming Inference” AISTATS 2014
Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014



Threads

SMC Schematic

continuations
observe

Intuitively

- run
- wait/weight
- continue



Metropolis Hastings = “Single Site” MCMC = LMH

Posterior distribution of execution traces is proportional to trace score with
observed values plugged in

’V(X> il p(X,Y) — ng(yz\@) ];Efj(ﬂfjwj) 7T(X) L p(X\y) _ %

Metropolis-Hastings acceptance rule

Need proposal

Milch and Russell “General-Purpose MCMC Inference over Relational Structures.” UAI 2006.
Goodman, Mansinghka, Roy, Bonawitz, and Tenenbaum “Church: a language for generative models.” UAI 2008. 63
Wingate, Stuhimiller, Goodman “Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation” AISTATS 2011



LMR Proposal

Probability of new part of
proposed execution trace

q(x'[x%) = = r(xglep) H fi(3163)

J=¢+1

Number of samples in
original trace



LMH Acceptance Ratio

“Single site update” = sample from the prior = run program forward
’f(xfm|xm> — fm(xf/m’@m)a Om = ‘9;7@
MH acceptance ratio

Probability of original trace continuation
Number of sample statements restarting proposal trace at mt" sample

In original trace /
/ M
Y(X )M [T, fi(z;]05)
M/

/ / / /
y(x)M' [ [, f5(x5]65)
Number of sample statements Probability of proposal trace continuation
In new trace restarting original trace at mth sample

65



L MH Schematic

>0 __07>0 00 06—
Q—>0\0 Q\Q O\z—>



Implementation Strategy

* |nterpreted

* Interpreter tracks side effects and directs control flow
for inference

 Compiled
* Leverages existing compiler infrastructure

e Can only exert control over flow from within function
calls

* e.9. sample, observe, predict

Wingate, Stuhimduller, Goodman “Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation” AISTATS 2011
Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014



Processes

Probabilistic C

Intuitively

-run
- wait/weight
- fork

new processes
observe

Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014



Compilation
LW

* sample: inject random values
LMH

e catalog all random choices and compare traces by running
new future

SMC - run multiple independent futures without corrupting past
« Must have control over the “rest of the computation”

No longer control execution, can only interrupt and exert control
at key points

e Start, Sample, Observe, Predict, Terminate



Continuations

o A continuation is a function that encapsulates the “rest of the
computation”

« A Continuation Passing Style (CPS) transformation rewrites
programs so

e NO function ever returns

e every function takes an extra argument, a function called the
continuation

e Standard programming language technigue

 No limitations

Friedman and Wand. “Essentials of programming languages.” MIT press, 2008.

Fischer, Kiselyov, and Shan “Purely functional lazy non-deterministic programming” ACM Sigplan 2009
Goodman and Stuhimduller http://dippl.org/ 2014

Tolpin https://bitbucket.org/probprog/anglican/ 2014



Example CPS Transformation

;5 Standard Clojure:
(println (+ (+x 2 3) 4))

;5 CPS transformed.:

(x& 2 3 (fn [x] (+& x 4 println)))
|

|
Second cont.

First continuation

;5 CPS-transformed "primitives"”
(defn +& [a b k] (k (+ a b)))
(defn *& [a b k] (k (* a b)))



CPS Explicitly Linearizes Execution

(defn pythagk

[x v K]
(square& x o — 32
(fn [xx] ,
(square& y vy =y
(fn [yyl TTYY = TT + Yy

(+& xx yy - = \/zTYY
(fn [xxyy]

(sqrt& xxyy k))))))))

« Compiling to a pure language with lexical scoping ensures
A. variables needed in subsequent computation are bound in the environment

B. can’t be modified by multiple calls to the continuation function



(defquery flip-example [outcome]
(let [p (sample (uniform-continuous 0 1))]
(observe (flip p) outcome)

Anglican Programs

(predict :p p))

Ang

ican

(let [u (uniform-continuous 0 1)
p (sample u)
dist (flip p)]
(observe dist outcome)

(predict :p p))

T

Anglican “linearized”



Are “Compiled” to Native CPS-Clojure

(defn flip-query& [outcome k1]

(uniform-continuous& 0 1 (let [u (uniform-continuous 0 1)
(fn [dist1]
(sample& distl p (sample u)
(fn [p] ((fn [p k2]
(flip& p dist (flip p)]
(fn [dist2]
(observe& dist2 outcome (observe dist outcome)
(fn []
(predict& :p p k2)))))) (predict :p p))
p k1))))))

| T

Clojure Anglican “linearized”




Are “Compiled” to Native CPS-Clojure

(defn flip-query& [outcome k1]
(uniform-continuous& 0 1
(fn [dist1]
(sample& distl
(fn [p] ((fn [p k2]
(flip& p
(fn [dist2]
(observe& dist2 outcome

(fn []

(predict& :p p k2))))))
p k1))))))

(defn uniform-continuous& [a b k]
(k (uniform-continuous a b)))

(defn flip& [p kI
(k (flip p)))

A

Clojure

(let [u (uniform-continuous 0 1)
p (sample u)
dist (flip p)]
(observe dist outcome)

(predict :p p))

T

Anglican “linearized”



continuation functions

Explicit Functional Form for "Rest of Program”

(defn flip-query& [outcome k1]
(uniform-continuous& O 1
» (fn [dist1]
(sample& distl
» (fn [p] ((fn [p k2]
(flip& p
» (fn [dist2]
(observe& dist2 outcome
» (fn []
(predict& :p p k2))))))
p k1))))))




Interruptible

(defn flip-query& [outcome ki]

(uniform-continuous& O 1
(fn [dist1]

(sample& distl
(fn [p] ((fn [p k2]

(flip& p
(fn [dist2]

(observe& dist?2 outcome

(fn []

(predict& :p p k2))))))
p k1))))))

soAllwld ueolbuy



Controllable

(defn flip-query& [outcome k1]
(uniform-continuous& O 1
(fn [dist1]
(sample& distl
(th [p] ((fn [p k2]
(flip& p
(fn [dist?2]
(observe& dist2 outcome
(fn []
(predict& :p p k2))))))
p k1)))))D T

inference “backend” interface

webPPL CPS compiles to pure functional Javascript



Inference “Backend”

(defn sample& [dist k]
;5 [ ALGORITHM-SPECIFIC IMPLEMENTATION HERE ]
;5 Pass the sampled walue to the continuation

(k (sample dist)))

(defn observe& [dist value k]
(println "log-weight =" (observe dist value))
;; [ ALGORITHM-SPECIFIC IMPLEMENTATION HERE ]
;5 Call continuation with nmo arguments

(k))

(defn predict& [label value k]
;5 [ ALGORITHM-SPECIFIC IMPLEMENTATION HERE ]
(k label value))



Common Framework

Pure compiled deterministic computation
start P continue P continue P terminate P

-0 00 ® ®

(k) (k)

“Backend”

sample observe

(faeak) (g7¢7y7k)

predict

(2, k)

terminate




Likelihood Weighting “Backend”

(defn sample& [dist k]
;5 Call the continuation with a sampled value
(k (sample dist)))

(defn observe& [dist value k]
;5 Compute and record the log weight
(add-log-weight! (observe dist value))
;5 Call the continuation with no arguments

(k))

(defn predict& [label value k]
;5 Store predict, and call continuation
(store! label value)

(k))



Likelihood Weighting Example

Compiled pure deterministic computation

start P continue P continue P terminate P

-0 06—/0 ©

sampl\eN observ\eS\ predict& terminate

N N N N
D~ Z/[(O, 1) W I(outcome=true) 1 — I(outcome=false)
“Backend” b ( )

(defquery flip-example [outcome]
(let [p (sample (uniform-continuous 0 1))]
(observe (flip p) outcome)

(predict :p p))



SMC Backend

(defn sample& [dist k]

;5 Call the continuation with a sampled value
(k (sample dist)))

(defn observe& [dist value k]

;5 Block and wart for K calls to reach observeé

;; Compute weights

;; Use weights to subselect continuations to call

;; Call K sampled continuations (oftem multiple times)

(defn predict& [label value k]

;; Store predict, and call continuation
(store! label value)

(k))



Particle Markov Chain Monte Carlo

Andrieu, Doucet, Holenstein “Particle Markov chain Monte Carlo methods.“ JRSSB 2010

e |terable SMC

- PIMH : “particle
iIndependent Metropolis-

Hastings”

- PGIBBS : “iterated
conditional SMC”

PGAS : “particle Gibbs
ancestral sampleing’ T T

Sweep

vVi|ie O |

Wood, van de Meent, Mansinghka “A new approach to probabilistic programming inference” AISTATS 2014



PIMAR Math

e Each sweep of SMC can

compute

i

n=1

 PIMH is MH that accepts entire
new particle sets w.p.

]EPIMH [Q(X)]

15

n

5

=1

e

Sweep

\4

Wood, van de Meent, Mansinghka “A new approach to probabilistic programming inference” AISTATS 2014

Paiae and Wood “A Compilation Taraet for Probabilistic Proarammina Lanauaaes” ICML 2014
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Particle Cascade

Paige, W., Doucet, Teh; NIPS 2014



L MH Backend

(defn sample& [a dist k]
(let [;, reuse previous value,
;5 or sample from prior
x (or (get-cache a)
(sample dist))]
;5 add to log-weight when reused
(when (get-cache a)
(add-log-weight! (observe dist x)))
;5 Store value and <1ts log prob in trace
(store-in-trace! a x dist)
;; continue with value

(k x)))

(defn observe& [dist value k]
;; Compute and record the log weight
(add-log-weight! (observe dist value))
;; Call the continuation with no arguments

(k)



L MH Variants

Q—b. .—b. Q—PQ .—V. Q—V.

\A \A \A

D. Wingate, A. Stuhlmueller, and N. D. Goodman.
"Lightweight implementations of probabilistic programming languages via transformational compilation." AISTATS (2011).

*o—> 0 .—V' .—V‘ .—P. .—V. .—V.

\A \A \A

WebPPL
Anglican

Q—V' C—V. Q—V. .—VQ 0—?0

\A \A \A

'C3: L|ghtwe|ght Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching."
D. Ritchie, A. Stuhimuller, and N. D. Goodman. arXiv:1509.02151 (2015).

Q—V' .—V‘ .—VQ .—>0 Q—VQ

\A \A \A

Venture. a h|gher—order probabilistic programming platform W|th programmable mference.
V. Mansinghka, D. Selsam, and Y. Perov. arXiv:1404.0099 (2014).



Inference Backends in Anglican

* 14+ algorithms
* Average 165 lines of code per!

* Can implement and use without touching core
code base.

Algorithm  Type Ic.:i::]a: of Citation Description

smc IS 127 Wood et al. AISTATS, 2014 Sequential Monte Carlo

importance IS 21 Likelihood weighting

pcascade IS 176 Paige et al., NIPS, 2014 E:Tiézle cascade: Anytime asynchronous sequential Monte
pgibbs PMCMC 121 Wood et al. AISTATS, 2014 Particle Gibbs (iterated conditional SMC)

pimh PMCMC 68 Wood et al. AISTATS, 2014 Particle independent Metropolis-Hastings

pgas PMCMC 179 \zlgr;sde Msent et al., AISTATS, Particle Gibbs with ancestor sampling

Imh MCMC 177 Wingate et al., AISTATS, 2011 Lightweight Metropolis-Hastings

almh MCMC 320 Tolpin et al., ECML PKDD, 2015 Adaptive scheduling lightweight Metropolis-Hastings
rmh* MCMC 319 - Random-walk Metropolis-Hastings

palmh MCMC 66 - ﬁgrsatlillnegllissed adaptive scheduling lightweight Metropolis-
plmh MCMC 62 - Parallelised lightweight Metropolis-Hastings

bamc MAP 318 Tolpin et al., SoCS, 2015 Bayesian Ascent Monte Carlo

siman MAP 193 Tolpin et al., SoCS, 2015 MAP estimation via simulated annealing 89



Wrap Up



Where We Stand

* Probabillistic programming concept
* Long well established

* Tool maturity
* Homework
* Prototyping
* Research
 Advanced research
* Small real-world applications

e Put-offs

« Some highly optimized models that you know to scale
well don't necessarily scale well in current probabillistic
programming systems.

91



Opportunities



Static Efficiencies

* Automated program transformations that simplity or
eliminate inference (moving observes up and out)

(defquery beta-bernoulli [observation] (defquery beta-bernoulli [observation]
(let [dist (beta 1 1) (let [dist (beta
theta (sample dist) (if observation 2 1)
like (flip theta)] 777 > (if observation 1 2))
(observe like observation) theta (sample dist)]
(predict :theta theta))) (predict :theta theta)))

Carette and Shan. “Simplifying Probabilistic Programs Using Computer Algebra~.” T.R. 719, Indiana University (2015)
Yang - Keynote Lecture, APLAS (2015)



Normalization

 Program analyses that identity algebraic or algorithmic
normalization opportunities

(defquery marsaglia [mu sigma]
(let [u (uniform-continuous -1.0 1.0)]

(predict 1 o
(loop [X (Sample U.) ............... > p(x|u’o-) — 6_ 202
y (sample u)] oV 2T
(let [s (+ (* x x) (*x vy y))]
(if (< s 1.0)

(+ mu (* sigma
(+ x (sqrt (+ -2.0 (/ (log s) =))))))
(recur (sample u) (sample u))))))))



Data driven proposals

output layer

Kulkarni, Kohli, Tenenbaum, Mansinghka "Picture: a probabilistic programming language for scene perception." CVPR (2015).
Perov, Le, Wood “Data-driven Sequential Monte Carlo in Probabilistic Programming” NIPS BBLI Workshop (2015).
Paige, Wood “Inference Networks for Graphical Models” NIPS AABI Workshop (2015).



Wrap Up



A Gentle Plea

* Bayesians
« Stop writing assembly code!

* Join us
* Try writing models in our languages
* Contribute inference algorithms

* Neural net people
* Help make inference better

 Train your neural nets to do something
interpretable

97



BSest Way to Al

* Neural nets end to end (DeepMind)

* (Generic probabilistic programs used to impose
evolutionary regularity on that which is computed

by deep networks.
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Bubble Up

Models
Probabilistic Programming Language

Probabilistic Programming System

Inference



Bubble Up

Al

Models
Probabilistic Programming Language

Probabilistic Programming System

Inference



Anglican Resources

General
* http://www.robots.ox.ac.uk/~fwood/anglican
Learning probabilistic programming and Anglican

» https://bitbucket.org/probprog/mlss2015

Writing applications

» https://bitbucket.org/probprog/anglican-user

The core / looking at inference algorithms
* https://bitbucket.org/probprog/anglican

Trying it out (5 min. install)

» https://bitbucket.org/probprog/anglican-examples



Go-To Resources

Writing your own probabilistic programming language

 http://dippl.org

Model example repository

* http://forestdb.org/
Easiest places to start (browser-based)

 http://webppl.org/

* hitps://probmods.or

Place to find all the literature in one place

» http://probabilistic-programming.org/wiki/Home
Place to go for the most advanced ideas in prob. prog.

* http://probcomp.csail.mit.edu/venture/




Some Final Thoughts

Adopting the kinds of abstraction boundaries
suggested by probabilistic programming practice will
move the field of machine learning forward much
faster make it easier for inference and modeling
experts to work together.

Probabilistic programming is not about making what
you already do faster or somehow better but instead
about making it possible to do things that would
otherwise be nearly impossible to do.
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Thank You

Faculty Market Graduating Too Late

van de Meent Tolpin

Tenenbaum Mansinghka

* Funding : DARPA




Postdoc Openings

e 3 probabillistic programming postdoc openings

» http://goo.gl/BtoCEr
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