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Google Brain project started in 2011, with a focus on 
pushing state-of-the-art in neural networks.  Initial 
emphasis:

● use large datasets, and 
● large amounts of computation

to push boundaries of what is possible in perception and 
language understanding

Background



Overview
● Cover our experience from past ~5 years

○ Research: speech, images, video, robotics, language understanding, 
NLP, translation, optimization algorithms, unsupervised learning, …

○ Production: deployed systems for advertising, search, GMail, Photos, 
Maps, YouTube, speech recognition, image analysis, user prediction, …

● Focus on neural nets, but many techniques more 
broadly applicable



Overview
● Demonstrate TensorFlow, an open source machine 

learning system
○ Our primary research and production system
○ Show real examples
○ Explain what’s happening underneath the covers



● Introduction to Deep Learning
● TensorFlow Basics

○ Demo
○ Implementation Overview

● Scaling Up
○ Model Parallelism
○ Data Parallelism
○ Expressing these in TensorFlow

● More complex examples
○ CNNs / Deep LSTMs

Outline



Growing Use of Deep Learning at Google

Android
Apps
drug discovery
Gmail
Image understanding
Maps
Natural language 
understanding
Photos
Robotics research
Speech
Translation
YouTube
… many others ...

Across many 
products/areas:

# of directories containing model description files
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Deep Learning

Universal Machine Learning
Speech

Text
Search 

Queries
Images
Videos
Labels

Entities
Words
Audio

Features
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Deep Learning

Universal Machine Learning

...that works better than the alternatives!

Current State-of-the-art in:
Speech Recognition
Image Recognition

Machine Translation
Molecular Activity Prediction

Road Hazard Detection
Optical Character Recognition

...



ConvNets



Some More Benefits

Deals very naturally w/sequence data (text, speech, video...)

Very effective at transfer learning across tasks

Very easy to get started with a commodity GPU

A common ‘language’ across great many fields of research



Two Generations of Distributed ML Systems

1st generation - DistBelief (Dean et al., NIPS 2012)

● Scalable, good for production, but not very flexible for research

2nd generation - TensorFlow (see tenorflow.org and 
whitepaper 2015, tensorflow.org/whitepaper2015.pdf)

● Scalable, good for production, but also flexible for variety of research uses
● Portable across range of platforms
● Open source w/ Apache 2.0 license

http://tensorflow.org
http://tensorflow.org/whitepaper2015.pdf


Need Both Large Datasets & Large, Powerful Models
“Scaling Recurrent Neural Network Language Models”, Williams et al. 2015
arxiv.org/pdf/1502.00512v1.pdf

http://arxiv.org/pdf/1502.00512v1.pdf
http://arxiv.org/pdf/1502.00512v1.pdf


Large Datasets + Powerful Models
● Combination works incredibly well
● Poses interesting systems problems, though:

○ Need lots of computation
○ Want to train and do experiments quickly
○ Large-scale parallelism using distributed systems 

really only way to do this at very large scale
○ Also want to easily express machine learning ideas



Basics of Deep Learning
● Unsupervised cat
● Speech
● Vision
● General trend is towards more complex models:

○ Embeddings of various kinds
○ Generative models
○ Layered LSTMs
○ Attention



Learning from Unlabeled Images

• Train on 10 million images (YouTube)
• 1000 machines (16,000 cores) for 1 week.
• 1.15 billion parameters



Learning from Unlabeled Images

Top 48 stimuli from the test set
Optimal stimulus 

by numerical optimization



Learning from Unlabeled Images

Top 48 stimuli from the test set
Optimal stimulus 

by numerical optimization



Adding Supervision

Top stimuli for selected neurons. 



Speech: Feedforward Acoustic Models

Model speech frame-by-frame, 
independently

Simple fully-connected networks

Deep Neural Networks for 
Acoustic Modeling in Speech 
Recognition
Hinton et al. IEEE Signal 
Processing Magazine, 2012



CLDNNs

Model frequency invariance using 1D convolutions

Model time dynamics using an LSTM

Use fully connected layers on top to add depth

Convolutional, Long Short-Term Memory,
Fully Connected Deep Neural Networks

Sainath et al. ICASSP’15



Trend: LSTMs end-to-end!

Train recurrent models that also incorporate Lexical and Language Modeling:

Fast and Accurate Recurrent Neural Network
Acoustic Models for Speech Recognition, H. Sak et al. 2015

Deep Speech: Scaling up end-to-end speech recognition, A. Hannun et al. 2014

Listen, Attend and Spell, W. Chan et al. 2015

Speech Acoustics Phonetics Language Text



CNNs for Vision: AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
Krizhevsky, Sutskever and Hinton, NIPS 2012



The Inception Architecture (GoogLeNet, 2015)

Basic module, which is then 
replicated many times



The Inception Architecture (GoogLeNet, 2015)

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, 
Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

ArXiv 2014, CVPR 2015



Inception-v3 (December 2015)

http://arxiv.org/abs/1512.00567

http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567


Team Year Place Error (top-5) Params

XRCE (pre-neural-net explosion) 2011 1st 25.8%

Supervision (AlexNet) 2012 1st 16.4% 60M

Clarifai 2013 1st 11.7% 65M

MSRA 2014 3rd 7.35%

VGG 2014 2nd 7.32% 180M

GoogLeNet (Inception) 2014 1st 6.66% 5M

Andrej Karpathy (human) 2014 N/A 5.1% 100 trillion?

BN-Inception (Arxiv) 2015 N/A 4.9% 13M

Inception-v3 (Arxiv) 2015 N/A 3.46% 25M

Rapid Progress in Image Recognition

ImageNet 
challenge 
classification 
task

Models with small number of parameters fit easily in a mobile app (8-bit fixed point)



Today’s News: Pre-trained Inception-v3 model released

Dear TensorFlow community,

Today we are releasing our best image classifier trained on ImageNet data. As described in our 
recent Arxiv preprint at http://arxiv.org/abs/1512.00567, an ensemble of four of these models 
achieves 3.5% top-5 error on the validation set of the ImageNet whole image ILSVRC2012 
classification task (compared with our ensemble from last year that won the 2014 ImageNet 
classification challenge with a 6.66% top-5 error rate).

In this release, we are supplying code and data files containing the trained model parameters for 
running the image classifier on:

● Both desktop and mobile environments
● Employing either a C++ or Python API.

In addition, we are providing a tutorial that describes how to use the image recognition system for a 
variety of use-cases.
    http://www.tensorflow.org/tutorials/image_recognition/index.html

http://googleresearch.blogspot.com/2015/12/how-to-classify-images-with-tensorflow.html

http://arxiv.org/abs/1512.00567
http://www.tensorflow.org/tutorials/image_recognition/index.html
http://www.tensorflow.org/tutorials/image_recognition/index.html
http://www.tensorflow.org/tutorials/image_recognition/index.html
http://googleresearch.blogspot.com/2015/12/how-to-classify-images-with-tensorflow.html
http://googleresearch.blogspot.com/2015/12/how-to-classify-images-with-tensorflow.html




What do you want in a research system?
● Ease of expression: for lots of crazy ML ideas/algorithms
● Scalability: can run experiments quickly
● Portability: can run on wide variety of platforms
● Reproducibility: easy to share and reproduce research
● Production readiness: go from research to real products



TensorFlow:
Second Generation Deep Learning System



http://tensorflow.org/

If we like it, wouldn’t the rest of the world like it, too?

Open sourced single-machine TensorFlow on Monday, Nov. 9th
● Flexible Apache 2.0 open source licensing
● Updates for distributed implementation coming soon

http://tensorflow.org/
http://tensorflow.org/


DistBelief (1st system):

● Great for scalability, and production training of basic kinds of models
● Not as flexible as we wanted for research purposes

Better understanding of problem space allowed us to 
make some dramatic simplifications

Motivations



TensorFlow: Expressing High-Level ML Computations

● Core in C++

Core TensorFlow Execution System

CPU GPU Android iOS ...
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● Different front ends for specifying/driving the computation

○ Python and C++ today, easy to add more
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TensorFlow: Expressing High-Level ML Computations

● Core in C++
● Different front ends for specifying/driving the computation

○ Python and C++ today, easy to add more

Core TensorFlow Execution System

CPU GPU Android iOS ...

C++ front end Python front end ...



Automatically runs models on range of platforms:

from phones ...

to single machines (CPU and/or GPUs) …

to distributed systems of many 100s of GPU cards

Portable



MatMul

Add Relu

biases

weights

examples

labels

Xent

Graph of Nodes, also called Operations or ops.

Computation is a dataflow graph



with tensors

MatMul

Add Relu

biases

weights

examples

labels

Xent

Edges are N-dimensional arrays: Tensors

Computation is a dataflow graph



with state

Add Mul

biases

...

learning rate

−=...

'Biases' is a variable −= updates biasesSome ops compute gradients

Computation is a dataflow graph



Device BDevice A

distributed

Add Mul

biases

learning rate

−=...

Devices: Processes, Machines, GPUs, etc

...

Computation is a dataflow graph
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Device A Device B

distributed

Add Mul

biases

learning rate

−=...

Devices: Processes, Machines, GPUs, etc

Send and Receive Nodes

Send

Recv

Send Recv
Send Recv

... RecvSend



Send and Receive Implementations

● Different implementations depending on source/dest devices

● e.g. GPUs on same machine: local GPU → GPU copy

● e.g. CPUs on different machines: cross-machine RPC

● e.g. GPUs on different machines: RDMA



Extensible

● Core system defines a number of standard operations 

and kernels (device-specific implementations of 

operations)

● Easy to define new operators and/or kernels



Session Interface

● Extend: add nodes to computation graph

● Run: execute an arbitrary subgraph
○ optionally feeding in Tensor inputs and retrieving Tensor output

Typically, setup a graph with one or a few Extend calls and 

then Run it thousands or millions or times



Single Process Configuration



Distributed Configuration
RPC

RPC RPC RPC



Feeding and Fetching

Run(input={“b”: ...}, outputs={“f:0”})



Feeding and Fetching

Run(input={“b”: ...}, outputs={“f:0”})



Example: Power method for Eigenvectors
● Simple 5x5 matrix, compute result, iterated K times
● TensorBoard graph visualization



Under the hood: Power method
● Operators
● Kernel implementations for different devices
● Run call
● Tensor memory management



Example: Symbolic differentiation
● f(x) = xT * W * x ; now minimize
● Show df/dx = 2*Wx in graph



Initial measurements done by Soumith Chintala
TensorFlow Single Device Performance

See https://github.com/soumith/convnet-benchmarks/issues/66
Two main factors:
(1) various overheads (nvcc doesn’t like 64-bit tensor indices, etc.)
(2) versions of convolutional libraries being used (cuDNNv2 vs. v3, etc.)

Benchmark Forward Forward+Backward

AlexNet - cuDNNv3 on Torch (Soumith) 32 ms 96 ms

AlexNet - Neon (Soumith) 32 ms 101 ms

AlexNet - cuDNNv2 on Torch (Soumith) 70 ms 231 ms

AlexNet - cuDNNv2 on TensorFlow 0.5 (Soumith) 96 ms 326 ms

https://github.com/soumith/convnet-benchmarks/issues/66


TensorFlow Single Device Performance
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AlexNet - cuDNNv2 on TensorFlow 0.5 (our machine) 97 ms 336 ms

Prong 1: Tackling sources of overhead
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TensorFlow Single Device Performance

Benchmark Forward Forward+Backward

AlexNet - cuDNNv2 on TensorFlow 0.5 97 ms 336 ms

AlexNet - cuDNNv2 on TensorFlow 0.6 (soon) 70 ms (+27%) 230 ms (+31%)

OxfordNet - cuDNNv2 on TensorFlow 0.5 573 ms 1923 ms

OxfordNet - cuDNNv2 on TensorFlow 0.6 (soon) 338 ms (+41%) 1240 ms (+36%)

Overfeat - cuDNNv2 on TensorFlow 0.5 322 ms 1179 ms

Overfeat - cuDNNv2 on TensorFlow 0.6 (soon) 198 ms (+39%) 832 ms (+29%)

TF 0.5 vs. 0.6 release candidate measurements (on our machine w/ Titan-X)



TensorFlow Single Device Performance

Prong 2: Upgrade to faster core libraries like cuDNN v3 
(and/or the upcoming v4)

Won’t make it into 0.6 release later this week, but likely in 
next release



Single device performance important, but
….

 biggest performance improvements come 
from large-scale distributed systems with 

model and data parallelism



Experiment Turnaround Time and Research Productivity

● Minutes, Hours:
○ Interactive research!  Instant gratification!

● 1-4 days
○ Tolerable
○ Interactivity replaced by running many experiments in parallel

● 1-4 weeks
○ High value experiments only
○ Progress stalls

● >1 month
○ Don’t even try



Transition
● How do you do this at scale?
● How does TensorFlow make distributed training easy?



Model Parallelism
● Best way to decrease training time: decrease the step 

time
● Many models have lots of inherent parallelism
● Problem is distributing work so communication doesn’t 

kill you
○ local connectivity (as found in CNNs)
○ towers with little or no connectivity between towers (e.g. AlexNet)
○ specialized parts of model active only for some examples



On a single core: Instruction parallelism (SIMD). Pretty much 
free.

Across cores: thread parallelism. Almost free, unless across 
sockets, in which case inter-socket bandwidth matters (QPI on 
Intel).

Across devices: for GPUs, often limited by PCIe bandwidth.

Across machines: limited by network bandwidth / latency

Exploiting Model Parallelism



Model Parallelism



Model Parallelism



Model Parallelism





Data Parallelism
● Use multiple model replicas to process different 

examples at the same time
○ All collaborate to update model state (parameters) in shared 

parameter server(s)

● Speedups depend highly on kind of model
○ Dense models: 10-40X speedup from 50 replicas
○ Sparse models:

■ support many more replicas
■ often can use as many as 1000 replicas



Data Parallelism

 

Parameter Servers

...Model
Replicas

Data ...
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Data Parallelism

 

Parameter Servers

...Model
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p’’ = p’ + ∆p



Data Parallelism Choices
Can do this synchronously:

● N replicas equivalent to an N times larger batch size
● Pro: No gradient staleness
● Con: Less fault tolerant (requires some recovery if any single machine fails)

Can do this asynchronously:

● Pro: Relatively fault tolerant (failure in model replica doesn’t block other 
replicas)

● Con: Gradient staleness means each gradient less effective

(Or hybrid: M asynchronous groups of N synchronous replicas)



Data Parallelism Considerations
Want model computation time to be large relative to time to 
send/receive parameters over network

Models with fewer parameters, that reuse each parameter multiple times in the 
computation

● Mini-batches of size B reuse parameters B times
Certain model structures reuse each parameter many times within each example:

● Convolutional models tend to reuse hundreds or thousands of times per 
example (for different spatial positions)

● Recurrent models (LSTMs, RNNs) tend to reuse tens to hundreds of times 
(for unrolling through T time steps during training)



Success of Data Parallelism
● Data parallelism is really important for many of Google’s 

problems (very large datasets, large models):
○ RankBrain uses 500 replicas
○ ImageNet Inception training uses 50 GPUs, ~40X 

speedup
○ SmartReply uses 16 replicas, each with multiple GPUs
○ State-of-the-art on LM “One Billion Word” Benchmark 

model uses both data and model parallelism on 32 
GPUs



10 vs 50 Replica Inception Synchronous Training

Hours

10 replicas
50 replicas



10 vs 50 Replica Inception Synchronous Training

Hours

10 replicas
50 replicas

19.6 vs. 80.3 (4.1X)

5.6 vs. 21.8 (3.9X)



Using TensorFlow for Parallelism
Trivial to express both model parallelism as well as data 
parallelism

● Very minimal changes to single device model code



Devices and Graph Placement
● Given a graph and set of devices, TensorFlow 

implementation must decide which device executes 
each node



Full and Partial Device Constraints (Hints)
Devices are named hierarchically:

/job:localhost/device:cpu:0
/job:worker/task:17/device:gpu:3
/job:parameters/task:4/device:cpu:0

Client can specify full or partial constraints for nodes in 
graph:

“Place this node on /job:localhost/device:gpu:2”

“Place this node on /device:gpu:*”



Placement Algorithm
Given hints, plus a cost model (node execution time 
estimates and Tensor size estimates), make placement 
decisions

● Current relatively simple greedy algorithm
● Active area of work

Show CIFAR10 placement TensorBoard.



Example: LSTM [Hochreiter et al, 1997]

● From research paper to code



Sequence-to-Sequence Model

 A  B  C

v

 D __  X  Y  Z

 X  Y  Z  Q

Input sequence

Target sequence

[Sutskever & Vinyals & Le NIPS 2014]



● Active area of research
● Many groups actively pursuing RNN/LSTM

○ Montreal
○ Stanford
○ U of Toronto
○ Berkeley
○ Google
○ ...

● Further Improvements
○ Attention
○ NTM / Memory Nets
○ ...

Sequence-to-Sequence



Sequence-to-Sequence
● Translation: [Kalchbrenner et al., EMNLP 2013][Cho et al., EMLP 2014][Sutskever & Vinyals & Le, NIPS 

2014][Luong et al., ACL 2015][Bahdanau et al., ICLR 2015]

● Image captions: [Mao et al., ICLR 2015][Vinyals et al., CVPR 2015][Donahue et al., CVPR 2015][Xu et al., 
ICML 2015]

● Speech: [Chorowsky et al., NIPS DL 2014][Chan et al., arxiv 2015]

● Language Understanding: [Vinyals & Kaiser et al., NIPS 2015][Kiros et al., NIPS 2015]

● Dialogue: [Shang et al., ACL 2015][Sordoni et al., NAACL 2015][Vinyals & Le, ICML DL 2015]

● Video Generation: [Srivastava et al., ICML 2015] 

● Algorithms: [Zaremba & Sutskever, arxiv 2014][Vinyals & Fortunato & Jaitly, NIPS 2015][Kaiser & 
Sutskever, arxiv 2015][Zaremba et al., arxiv 2015]



How to do Image Captions?

P(English | French)P(English | Image )



How?

W __  A young  girl

 A young  girl  asleep[Vinyals et al., CVPR 2015]



NIC: A close up of a child 
holding a stuffed animal.

Human: A young girl asleep on 
the sofa cuddling a stuffed 
bear.

NIC: A baby is asleep next to a 
teddy bear.



(Recent) Captioning Results
Source: http://mscoco.org/dataset/#leaderboard-cap

Method Meteor CIDEr LSUN LSUN (2)
Google NIC 0.346 (1) 0.946 (1) 0.273 (2) 0.317 (2)
MSR Capt 0.339 (2) 0.937 (2) 0.250 (3) 0.301 (3)

UCLA/Baidu v2 0.325 (5) 0.935 (3) 0.223 (5) 0.252 (7)
MSR 0.331 (4) 0.925 (4) 0.268 (2) 0.322 (2)

MSR Nearest 0.318 (10) 0.916 (5) 0.216 (6) 0.255 (6)
Human 0.335 (3) 0.910 (6) 0.638 (1) 0.675 (1)

UCLA/Baidu v1 0.320 (8) 0.896 (7) 0.190 (9) 0.241 (8)
LRCN Berkeley 0.322 (7) 0.891 (8) 0.246 (4) 0.268 (5)
UofM/Toronto 0.323 (6) 0.878 (9) 0.262 (3) 0.272 (4)

http://mscoco.org/dataset/#leaderboard-cap


BestModel: A bunch of bananas 
and a bottle of wine.

Human: A close up of two 
bananas with bottles in the 
background.

InitialModel: A close up of a 
plate of food on a table.



BestModel: A cat sitting on top 
of a black car.

Human: A view of inside of a car 
where a cat is laying down.

InitialModel: A dog sitting in 
the passenger seat of a car.



BestModel: A small dog is 
sitting on a chair.

Human: A brown dog laying in a 
red wicker bed.

InitialModel: A large brown dog 
laying on top of a couch. 



BestModel: A man is holding a 
sandwich in his hand.

Human: A man outside cooking 
with a sub in his hand.

InitialModel: A man cutting a 
cake with a knife.



BestModel: A person is cooking 
some food on a grill. 

Human: Someone is using a 
small grill to melt his sandwich.

InitialModel: A pizza sitting on 
top of a white plate.



BestModel: A woman holding a 
banana up to her face.

Human: A woman holding up a 
yellow banana to her face.

InitialModel: A close up of a 
person eating a hot dog. 



BestModel: A blue and yellow 
train traveling down train 
tracks. 

Human: A blue , yellow and red 
train travels across the tracks 
near a depot.

InitialModel: A train that is 
sitting on the tracks.



Pointer Networks Teaser
➢ Goal: Mappings where outputs are (sub)sets of inputs
➢ Travelling Salesman Problem

➢ Convex Hulls



Pointer Networks

Poster => Wed. 210C #22

 
x5
y5

x5
y5

 
x6
y6

 ⇒  
x1
y1

 
x6
y6

1

 
x2
y2

6

⇐

5
2

1

 
x1
y1

 
x2
y2

 
x3
y3

x4
y4

 
x1
y1

⇒



Neural Conversational Models
● Take movie subtitles (~900M words) or IT HelpDesk chats
● Predict the next dialog from history

i got to go .
no .
i get too emotional when i drink .
have another beer . i 've got to get up early .
no , you don 't . sit down .
i get too emotional when i drink .
will you have another beer ?
i 've got to go !
why ?
i got to get up early in the morning .
you 're drunk .
and emotional !
you got to go .

[Vinyals & Le ICML DL Workshop 2015]



Small Feed-
Forward

Neural Network

Incoming Email

Activate
Smart Reply?

Deep Recurrent
Neural Network

Generated Replies

yes/no

Smart Reply
Google Research Blog

- Nov 2015

http://googleresearch.blogspot.com/2015/11/computer-respond-to-this-email.html
http://googleresearch.blogspot.com/2015/11/computer-respond-to-this-email.html
http://googleresearch.blogspot.com/2015/11/computer-respond-to-this-email.html
http://googleresearch.blogspot.com/2015/11/computer-respond-to-this-email.html


Example: LSTM

for i in range(20):
      m, c = LSTMCell(x[i], mprev, cprev)
      mprev = m
      cprev = c



Example: Deep LSTM

for i in range(20):
  for d in range(4): # d is depth
      input = x[i] if d is 0 else m[d-1]
      m[d], c[d] = LSTMCell(input, mprev[d], cprev[d])
      mprev[d] = m[d]
      cprev[d] = c[d]
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Example: Deep LSTM

for i in range(20):
  for d in range(4): # d is depth
    with tf.device("/gpu:%d" % d):
      input = x[i] if d is 0 else m[d-1]
      m[d], c[d] = LSTMCell(input, mprev[d], cprev[d])
      mprev[d] = m[d]
      cprev[d] = c[d]
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sentence
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1000 dims
This is very big!

Split softmax into
4 GPUs
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TensorFlow Queues

Input prefetching

Grouping similar examples

Randomization/Shuffling

Queue

...

Enqueue

...

Dequeue



Example: Deep LSTMs
● Wrinkles

○ Bucket sentences by length using a queue per length
○ Dequeue when a full batch of same length has 

accumulated
○ N different graphs for different lengths
○ Alternative: while loop



Expressing Data Parallelism
# We use the ReplicaDeviceSetter() device function to automatically
# assign Variables to the 'ps' jobs.   
with tf.device(“/cpu:0”):
      # Create the Mnist model.
      model = MnistModel(batch_size=16, hidden_units=200)

      # Get an initialized, and possibly recovered session.  
      sess = tf.Session()

      # Train the model.
      for local_step in xrange(FLAGS.max_steps):
        _, loss, step = sess.run([model.train_op, model.loss, model.global_step])
        if local_step % 1000 == 0:
          print "step %d: %g" % (step, loss)



Expressing Data Parallelism
# We use the ReplicaDeviceSetter() device function to automatically
# assign Variables to the 'ps' jobs.   
with tf.device(tf.ReplicaDeviceSetter(parameter_devices=10)):
      # Create the Mnist model.
      model = MnistModel(batch_size=16, hidden_units=200)

      # Create a Supervisor.  It will take care of initialization, summaries,
      # checkpoints, and recovery. When multiple replicas of this program are running,
      # the first one, identified by --task=0 is the 'chief' supervisor (e.g., initialization, saving) 
      supervisor = tf.Supervisor(is_chief=(FLAGS.task == 0), saver=model.saver)

      # Get an initialized, and possibly recovered session.  
      sess = supervisor.PrepareSession(FLAGS.master_job)

      # Train the model.
      for local_step in xrange(int32_max):
        _, loss, step = sess.run([model.train_op, model.loss, model.global_step])
        if step >= FLAGS.max_steps:
          break
        if local_step % 1000 == 0:
          print "step %d: %g" % (step, loss)



Asynchronous Training
● Unlike DistBelief, no separate parameter server system:

○ Parameters are now just stateful nodes in the graph



Synchronous Variant



Network Optimizations
● Neural net training very tolerant of reduced precision
● e.g. drop precision to 16 bits across network

Device A Device B

params
Mat
Mul

Send Recv

Input
...



Network Optimizations
● Neural net training very tolerant of reduced precision
● e.g. drop precision to 16 bits across network

Device A Device B

params
Mat
Mul

Send Recv

Input
...

ToFP16 ToFP32



Quantization for Inference
● Need even less precision for inference
● 8-bit fixed point works well, but many ways of 

quantizing
● Critical for things like mobile devices

○ w/quantization, high-end smart phone can run 
Inception model at >6 frames per second (fps)



Open Source Status for Distributed TensorFlow
Multi GPU in single machine already in open source release

● See 4-GPU CIFAR10 training example in repository

Distributed implementation coming soon:

● GitHub tracking issue: github.
com/tensorflow/tensorflow/issues/23

https://github.com/tensorflow/tensorflow/issues/23
https://github.com/tensorflow/tensorflow/issues/23
https://github.com/tensorflow/tensorflow/issues/23


Concluding Remarks
● Model and Data Parallelism enable great ML work:

○ Neural Machine Translation: ~6x speedup on 8 GPUs
○ Inception / Imagenet: ~40x speedup on 50 GPUs
○ RankBrain: ~300X speedup on 500 machines

● A variety of different parallelization schemes are easy to 
express in TensorFlow



Concluding Remarks
● Open Sourcing of TensorFlow

○ Rapid exchange of research ideas (we hope!)
○ Easy deployment of ML systems into products
○ TensorFlow community doing interesting things!



A Few TensorFlow Community Examples
● DQN: github.com/nivwusquorum/tensorflow-deepq

● NeuralArt: github.com/woodrush/neural-art-tf

● Char RNN: github.com/sherjilozair/char-rnn-tensorflow

● Keras ported to TensorFlow: github.com/fchollet/keras

● Show and Tell: github.com/jazzsaxmafia/show_and_tell.tensorflow

● Mandarin translation: github.com/jikexueyuanwiki/tensorflow-zh

...

https://github.com/nivwusquorum/tensorflow-deepq
https://github.com/woodrush/neural-art-tf
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/fchollet/keras
https://github.com/jazzsaxmafia/show_and_tell.tensorflow
https://github.com/jikexueyuanwiki/tensorflow-zh


 github.com/nivwusquorum/tensorflow-deepq

https://github.com/nivwusquorum/tensorflow-deepq


github.com/woodrush/neural-art-tf

https://github.com/woodrush/neural-art-tf
https://github.com/woodrush/neural-art-tf


github.com/sherjilozair/char-rnn-tensorflow

https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/sherjilozair/char-rnn-tensorflow


github.com/fchollet/keras

https://github.com/fchollet/keras
https://github.com/fchollet/keras


github.com/jazzsaxmafia/show_and_tell.tensorflow

https://github.com/jazzsaxmafia/show_and_tell.tensorflow
https://github.com/jazzsaxmafia/show_and_tell.tensorflow


github.com/jikexueyuanwiki/tensorflow-zh

http://github.com/jikexueyuanwiki/tensorflow-zh
http://github.com/jikexueyuanwiki/tensorflow-zh


Google Brain Residency Program

New one year immersion program in deep learning research

Learn to conduct deep learning research w/experts in our team
● Fixed one-year employment with salary, benefits, ...

● Goal after one year is to have conducted several research projects

● Interesting problems, TensorFlow, and access to computational resources



Google Brain Residency Program

Who should apply? 
● people with BSc, MSc or PhD, ideally in CS, mathematics or statistics

● completed coursework in calculus, linear algebra, and probability, or equiv.

● programming experience

● motivated, hard working, and have a strong interest in deep learning



Google Brain Residency Program

 Program Application & Timeline

DEADLINE: January 15, 2016



Google Brain Residency Program

For more information:
g.co/brainresidency

Contact us:
brain-residency@google.com

http://g.co/brainresidency
http://g.co/brainresidency

