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Motivation for studying vision:

trying to understand how the brain works

e Old dream of all
philosophers and more
recently of Al:

— understand how the
brain works

— make intelligent
machines




This tutorial:

using a class of models to summarize/interpret
experimental results

Models are cartoons of reality eg Bohr's model of the
hydrogen atom

All models are “wrong”

Some models can be useful summaries of data and some
can be a good starting point for more complete theories



ok owbdh-~

Problem of visual recognition, visual cortex
Historical background

Neurons and areas in the visual system
Data and feedforward hierarchical models
What is next?



The problem: recognition in natural images
(e.g., “Is there an animal in the image?”)



Presenter
Presentation Notes
Any task can be made arbitrarily easy or difficult…


How does visual cortex solve this problem?
How can computers solve this problem?

ventral
stream:
“‘what”

Desimone & Ungerleider 1989


Presenter
Presentation Notes
In first approximation: Two streams, different tasks

dorsal: where, spatial

ventral: what, identity

we are interested in OR (triangle theory<->appp<->ns and it’s also sexy), ventral stream: How can the brain recognize 3D objects, even under different viewpoints?

--> look @ what’s happening in the ventral stream: How do we know allthis?

--> Jon: What do ns do & how can we analyze it?


A “feedforward” version of the problem:
rapid categorization

SHOW RSVP
MOVIE

Movie courtesy of Jim DiCarlo

Biederman 1972; Potter 1975; Thorpe et al 1996



A model of the ventral stream which is also an algorithm
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Presentation Notes
For the past several years we have developed a computational theory of object recognition in the ventral stream of the visual cortex. 

The model closely follows the organization of the visual cortex (color encodes correspondence between stages/layers of the model and cortical areas)

Units in the model mimic as closely as possible the tuning properties of cells in corresponding cortical areas. That is, the parameters governing the tuning properties of the units (eg, frequency bandwidth, RF sizes, complexity of the preferred stimulus, etc) were constrained by neural data. 


...Ssolves the problem
(if mask forces feedforward processing)...

» d’~ standardized error
rate

* the higher the d’, the
better the per.
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Serre Oliva & Poggio 2007
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Presentation Notes
We tried simpler computer vision systems and they could not do the job!
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Problem of visual recognition, visual cortex
Historical background

Neurons and areas in the visual system
Data and feedforward hierarchical models
What is next?



Object recognition for computer vision:
personal historical perspective
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Examples: Learning Object Detection:
Finding Frontal Faces

* Training Database
* 1000+ Real, 3000+ VIRTUAL
« 50,0000+ Non-Face Pattern

Sung & Poggio 1995



~10 year old CBCL computer vision work: pedestrian
detection system In Mercedes test car now
becoming a product (MobilEye)
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Some personal history:

First step in developing a model:
learning to recognize 3D objects in IT cortex

Examples of Visual Stimuli

Poggio & Edelman 1990



An 1dea for a module for view-invariant
iIdentification

Prediction:
neurons become
view-tuned
through learning

Architecture that
accounts for
invariances to 3D
effects (>1 view
needed to learn!)

Poggio & Edelman 1990



Learning to Recognize 3D Objects in IT
Cortex

Examples of Visual Stimuli

After human psychophysics
(Buelthoff, Edelman, Tarr,
Sinha, ...), which supports
models based on view-tuned
units...

... physiology!

Logothetis Pauls & Poggio 1995



Recording Sites in Anterior IT

...neurons tuned to
faces are intermingled
nearby....

Logothetis, Pauls & Poggio 1995



Neurons tuned to object views as
predicted by model
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60 spikes/sec

A “View-Tuned” IT Cell
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VT cell found in the experiment:

<show>:	pref. Stim,	specific,	VP tuning


But also view-invariant object-specific nheurons
(5 of them over 1000 recordings)
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View-tuned cells:

scale invariance (one training view only) motivates present model
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pretty amazing


From “‘HMAX” to the model now...
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Problem of visual recognition, visual cortex
Historical background

Neurons and areas in the visual system
Data and feedforward hierarchical models
What is next?



Neural Circuits

Terminal buttons |

Source: Modified from Jody Culham’s web slides



Neuron basics

INPUT= pulses or
graded potentials

{ COMPUTATION

= Analog

Synapse




Some numbers

 Human Brain
— 10"-1072 neurons (1 million flies ©)
— 10'4- 107% synapses

« Neuron

— Fundamental space dimension:

 fine dendrites : 0.1 py diameter; lipid bilayer membrane : 5 nm
thick; specific proteins : pumps, channels, receptors,
enzymes

— Fundamental time length : 1 msec



The cerebral cortex

Thickness
Total surface area
(both sides)

Neurons /mm?
Total cortical neurons

Visual cortex
Visual Neurons

Human

3—4 mm
~1600 cm2
(~50cm diam)

~10% mm2
~2 x 1010

300 — 500 cm2
~4 x 109

Macaque
1-2mm
~160 cm2
(~15cm diam)

~10°% mm2
~2 x 109

80+cm?2
~109 neurons



Gross Brain Anatomy

Primary motor arca Primary sensory areas

Somatosensory area

Frontal lobe —__
Parietal lobe

¢ ) Occipital lobe

Visual area —

Auditory area

A large percentage of the cortex devoted
to vision


Presenter
Presentation Notes
In brain, different regions are involved in different tasks

(and the brain areas are conveniently colored to reflect this, too…)

vision, audition, somsens, motor… Learning & adaptation everywhere!

---> Q: What are the comp.mech.?

Why can we hope that there are common computational mech.?

---> common hardware: CORTEX


The Visual System

[Van Essen & Anderson, 1990]


Presenter
Presentation Notes
In our studies of learning & informations processing in the brain, we focus on the visual system --- most extensively researched modality



areas connected


V1: hierarchy of simple and complex cells

LGN-type Simple Complex
cells cells cells

-
f Visual image
Cortical

simple cell

(Hubel & Wiesel 1959)
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Presentation Notes
LGN-type cells, dot of light, bright dot on a dark bgd and vice-versa



From dots of light to “oriented bars”, slightly larger RFs, either white bar on black bgd or vice-versa, sensitive to the location of the bar within RF



Bar detector, insensitive to polarity of contrast (white on black or black on white)

Larger RF

Insensitive to the location of the bar within RF



How does that work?


V1: Orientation selectivity

Hubel & Wiesel
movie
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(Thorpe and Fabre-Thorpe, 2001)



Beyond V1: A gradual increase in RF
size

50 TE view independence

N\ 1
20 TEO view dependent

A configuration sensitive
8.0 Wz combinations of features

1)
392 V2

J.z larger receptive fields
1.3 \\\ Vi L]

0 1.33280 20 50
Eccentricity / deg

"y
[=]
]

Receptive Field Size / deg

Reproduced from [Kobatake & Tanaka, 1994] Reproduced from [Rolls, 2004]



Beyond V1: A gradual increase In the
complexity of the preferred stimulus
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AlT: Face cells
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AlT: Immediate recognition
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Ringach et al 1997; Rolls et al 1999; Keysers et al 2001
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Problem of visual recognition, visual cortex
Historical background

Neurons and areas in the visual system
Data and feedforward hierarchical models
What is next?



The ventral stream

Source: Lennie, Maunsell, Movshon




We consider feedforward architecture
only
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(Thorpe and Fabre-Thorpe, 2001)




Our present model of the ventral stream:
feedforward, accounting only for “immediate
recognition”

* ltis in the family of "Hubel-Wiesel” models (uvei s

Wiesel, 1959; Fukushima, 1980; Oram & Perrett, 1993, Wallis & Rolls, 1997; Riesenhuber &
Poggio, 1999; Thorpe, 2002; Ullman et al., 2002; Mel, 1997; Wersing and Koerner, 2003; LeCun
et al 1998; Amit & Mascaro 2003; Deco & Rolls 2006...)

* As a biological model of object recognition in the
ventral stream it is perhaps the most quantitative
and faithful to known biology (though many
details/facts are unknown or still to be
incorporated)



Two key computations

Unit types

Simple

Complex

Pooling

2>

Computation

Selectivity /
template
matching

Invariance

Operation

Gaussian-
tuning /
and-like

Soft-max /
or-like



» Max-like operation (or-like)

» Complex units
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Gaussian tuning

Gaussian tuning in Gaussian tuning in IT
V1 for orientation around 3D views

od  Spike tave (A7)

\ﬂ\

Hubel & Wiesel 1958 Logothetis Pauls & Poggio 1995
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Biophys. implementation

» Max and Gaussian-like tuning ;“ﬂ? 7
can be approximated with y= -
same canonical circuit using k+ (Z ,;:j’)
shunting inhibition =1

(Knoblich Koch Poggio in prep; Kouh & Poggio 2007; Knoblich Bouvrie Poggio 2007)


Presenter
Presentation Notes
ADD CABLE AND CITE RELEVANT PEOPLE


Operation (Steady-State) Output
" Can be implemented by
E Wy ,rip shunting inhibition (Grossberg
N _ —1 1973, Reichardt et al. 1983,
Canonical i = — - Carandini and Heeger, 1994)
and spike threshold variability
k4 E x? (Anderson et al. 2000, Miller
i—1 and Troyer, 2002)
_ 2 5 Adelson and Bergen (see also
Energ},e' Mocdel U = E ri Hassenstein and Reichardt,
i—1 1956)
S—
E Wy Iy
- . . o i=1 Of the same form as model
Gaussian-like Y= n of MT (Rust et al., Nature
L+ E -‘"ig Neuroscience, 2007
i=
n
E J'?;E
_ . i=1
Max-like y = -
|E|' + E .f'ig
i=1




Task-specific circuits  (from IT
to PFC)

Supervised learning: ~ Gaussian
RBF

Generic, overcomplete
dictionary of reusable shape
components (from V1 to IT)
provide unique representation

— Unsupervised learning (from
~10,000 natural images) during a
developmental-like stage




S2 units

Features of moderate complexity (n~1,000

types)
Combination of V1-like complex units at L 69 / |\ )
different orientations 000 2000

SO0 Sl SGDD

® Synaptic weights w
learned from natural
images

® 5-10 subunits chosen
at random from all
possible afferents
(~100-1,000)

stronger
suppression




y (%)

Nature Neuroscience - 10, 1313 - 1321 (2007) / Published online: 16 September 2007 | doi:10.1038/nn1975
Neurons in monkey visual area V2 encode combinations of orientations
Akiyuki Anzai, Xinmiao Peng & David C Van Essen
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C2 units

Same selectivity as S2 units but

increased tolerance to position and

size of preferred stimulus

Local pooling over S2 units with
same selectivity but slightly
different positions and scales

A prediction to be tested: S2 units

in V2 and C2 units in V47
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Presenter
Presentation Notes
obviously the existence of simple vs. complex units is a prediction from the model, which still needs to be shown experimentally.



One difficulty is that it would be very hard to tell apart say a S2 from a C2 unit, you would have to be able to isolate each cell subunit. Then the S2 units which project onto a C2 units all have the same selectivity which is also they share the same selectivity which is also the selectivity of the C2 unit onto which they project. So the only difference between S2 and C2 unit is simply the range of invariance (position and scale).



To a first approximation this is what was recently reported by Hegde and VanEssen




A loose hierarchy

* Bypass routes along with main routes:

* From V2 to TEO (bypassing V4) (Morel & Bullier 1990; Baizer et al 1991; Distler et al 1991;
Weller & Steele 1992; Nakamura et al 1993; Buffalo et al 2005)

* From V4 to TE (bypassing TEQO) (Desimone et al 1980; Saleem et al 1992)

* “Replication” of simpler selectivities from lower
to higher areas

* Richer dictionary of features with various
levels of selectivity and invariance


Presenter
Presentation Notes
In an even more extrem version Later I am going to show that this is important 


Comparison w| neural data

V1.
« Simple and complex cells tuning (Schiller et al 1976; Hubel & Wiesel 1965; Devalois et al 1982)

* MAX operation in subset of complex cells (Lampl et al 2004)

V4:

» Tuning for two-bar stimuli (Reynolds Chelazzi & Desimone 1999)
MAX operation (Gawne et al 2002)
Two-spot interaction (Freiwald et al 2005)

Tuning for boundary conformation (Pasupathy & Connor 2001, Cadieu et al., 2007)

Tuning for Cartesian and non-Cartesian gratings (Gallant et al 1996)

IT:

* Tuning and invariance properties (Logothetis et al 1995)

+ Differential role of IT and PFC in categorization (Freedman et al 2001, 2002, 2003)

* Read out data (Hung Kreiman Poggio & DiCarlo 2005)

» Pseudo-average effect in IT (Zoccolan Cox & DiCarlo 2005; Zoccolan Kouh Poggio & DiCarlo 2007)

Human:
» Rapid categorization (Serre Oliva Poggio 2007)
* Face processing (fMRI + psychophysics) (Riesenhuber et al 2004; Jiang et al 2006)

(Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005)
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Presentation Notes
-- For the past several years we have performed a number of quantitative comparisons between the tuning of units in the model and cells in corresponding cortical areas



Here there are 3 colors for 3 types of data,

Yellow is for data that I used to actuallyconstrain the model. Here those are V1 data that I used to get a population of V1 simple and complex units which mimics the tuning properties of cortical cells.



Then there are the green data, which were already predicted by the original model and which are still consistent with the new model



Then the red color indicates data which are consistent with the new model. These are data which in some cases already existed and were provided to us by the authors of the corresponding studies. There are also data (give example) which were actually collected in collaboration with experimentalists (eg Miller, DiCarlo) following a prediction from the model.



I am not going to be able to guide you through all of these data but I am going to show you a few key examples... 








Tuning for
curvature and
boundary
conformations?

Comparison w| V4
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No parameter fitting!

V4 neuron tuned to

. Most similar model C2 unit
boundary conformations
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Pasupathy & Connor 1999

Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005
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Finally I would like to point out that the learning rule generates S2 units that seem to be congruent with V4, explain figures, etc… Charles Cadieu and Minjoon Kouh in our lab have shown that the population of S2/C2 units generated is compatible with data from several group (at the population level). We can talk about it in the discussion (I have slides) if everybody is interested…


@ J Neurophysiol 98: 1733-1750, 2007. First published June 27, 2007

A Model of V4 Shape Selectivity and Invariance

Charles Cadieu, Minjoon Kouh, Anitha Pasupathy, Charles E. Connor, Maximilian
Riesenhuber and Tomaso Poggio
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More recently Charles Cadieu and Minjoon Kouh pushed the analysis further and showed that it is indeed possible to fit the model C2 units to single cells in V4 (the weights are no longer learned from natural images but learned using a greedy learning algorithm to fit single cells).


®

Sensory Interactions = resp (pair) —resp (reference)

Prediction: Response of the pair is predicted to fall

between the responses elicited by the stimuli alone

Reference (fixed
V4 neurons ? (fixed)

(with attention directed away C2 uni .
from receptive field) Hl%!)té(varylng)

2 . "_ S Experi
e Receptive
¢ Field

: : Fixation
. - : 7 Point
| Slope = 0.55
-1 - : 1 0.5 0 0.5 1
-1 0 1
Selectivity = response(probe) —response(reference)

(Reynolds et al 1999)
(Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005)
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Biased competition model predicts that with attention away line should pass through origin and should get a > o coef


Agreement w| IT Readout data
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Here is an example; for instance the read out data that Gabriel showed earlier. The level of invariance to position and scale is actually predicted by the model.

One key result from this study is that the visual system is extremely fast. Once the visual signal reaches IT which is where they recorded from in the study. From the very first spikes, one can already read out object category and identity.


Remarks

* The stage that includes (V4-PIT)-AIT-PFC
represents a learning network of the Gaussian
RBF type that is known (from learning theory) to
generalize well

* In the theory the stage between IT and "PFC” is
a linear classifier — like the one used in the read-
out experiments

* The inputs to IT are a large dictionary of
selective and invariant features



Rapid categorization





Close-body

Head | _Fr—p

L f)ﬂ

Database collected by Oliva & Torralba
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Any task can be made arbitrarily easy or difficult…


Rapid categorization task (with mask to test
feedforward model)

Image
Interval
Image—-Mask
Mask
1 /f noise

30 ms ISI

80 m\ Animal present

~ ?
« Ornot:

Thorpe et al 1996; Van Rullen & Koch 2003; Bacon-Mace et al 2005 \
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We used 30 ms ISI, with 20 ms presentation this is equivalent to SO% of 50ms. This is a fairly long SOA 



MODEL IS FEEDFOWARD (YOU CAN ASK ME DURING QUESTION TIME)

Mask tries to block feedback in visual cortex


...Solves the propiem (wnen mask rtorces

feedforward processing)...

» d’~ standardized error
rate

* the higher the d’, the
better the perf.

Performance (d")
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Model 82%

Human 80%
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== Human-observers
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Head Close- Medium- Far-
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Serre Oliva & Poggio 2007
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Presentation Notes
We tried simpler computer vision systems and they could not do the job!


Further comparisons

» Image-by-image correlation:
— Heads: p=0.71 Mod: 100% Hum: 969
— Close-body: p=0.84 y '
— Medium-body: p=0.71 B W
- Far-body. p=0.60 B 5 *g' ' .

* Model predicts level of performanc rotated
iImages (90 deg and inversion)

Serre Oliva & Poggio PNAS 2007



The street scene project

Source: Bileschi & Wolf


Presenter
Presentation Notes
Here is another application of the model. The work was performed by Stan Bileschi and Lior Wolf. Lior was a postdoc in the lab and this was part of Stan’s PhD thesis. This is kind of the old AI dream where ideally you would like to input such image as the street scene image on the left and you would like the system to automatically parse the image into its main objects.

What they did is to use the features produced by the model that were computed over small windows at all positions and scales in the image that they classified as being either one of 7 possible objects: cars, pedestrians, bikes, trees, buildings, skies and road.




The StreetScenes Database

3,547 Images, all taken with the same camera, of the same type of scene, and
hand labeled with the same objects, using the same labeling rules.

# Labeled Examples 5799 1449 5067 4932 3400 2562

http://cbcl.mit.edu/software-datasets/streetscenes/


Presenter
Presentation Notes
TODO:  Add 420 True Labels to this slide.
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car detection ROC curve pedestrian detection ROC curve
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True positive rate

True positive rate

building texture detection
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tree texture detection
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Problem of visual recognition, visual cortex
Historical background

Neurons and areas in the visual system
Data and feedforward hierarchical models
What is next?



What i1s next

A challenge for physiology: disprove basic
aspects of the architecture

Extensions to color and stereo

More sophisticated unsupervised,
developmental learning in V1, V4, PIT: how?

Extension to time and videos

Extending the simulation to integrate-and-fire
neurons (~ 1 billion) and realistic synapses:
towards the neural code



What i1s next

A challenge for physiology: disprove basic
aspects of the architecture

Extensions to color and stereo

More sophisticated unsupervised,
developmental learning in V1, V4, PIT: how?

Extension to time and videos

Extending the simulation to integrate-and-fire
neurons (~ 1 billion) and realistic synapses:
towards the neural code



Layers of cortical processing units

Task-specific circuits  (from IT
to PFC)

Supervised learning

* Generic dictionary of shape
components (from V1 to IT)

— Unsupervised learning during a
developmental-like stage learning
dictionaries of “templates” at
different S levels




%earning the Invariance from temporal
continuity

w| T. Masquelier & S. Thorpe (CNRS, France)

4+ Simple cells learn

correlation in space SHOW MOVIE
(at the same time)

4+ Complex cells learn
correlation in time

Foldiak 1991; Perrett et al 1984; Wallis & Rolls, 1997; Einhauser
et al 2002; Wiskott & Sejnowski 2002; Spratling 2005


Presenter
Presentation Notes
~19 hours of video ~10^6 frames

developmental like learning stage


What i1s next

A challenge for physiology: disprove basic
aspects of the architecture

Extensions to color and stereo

More sophisticated unsupervised,
developmental learning in V1, V4, PIT: how?

Extension to time and videos

Extending the simulation to integrate-and-fire
neurons (~ 1 billion) and realistic synapses:
towards the neural code



The problem

Training Videos

bend jack jump

pjump run walk

side wavel wave2

*each video~4s, 50~100 frames

Testing videos

Dataset from (Blank et al, 2005)




Previous work:
recognizing biological motion
using a model of the dorsal stream

SEX L
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Adapted from (Giese & Poggio, 2003)

See also (Casile & Giese 2005; Sigala et al, 2005)



Multi-class recognition accuracy

Baseline Our system
KTH Human 81.3 % 91.6 %
UCSD Mice 75.6 % 79.0 %
Weiz. Human 86.7 % 96.3 %
Average 81.2 % 89.6 %

HH. Jhuang, T. Serre, L. Wolf* and T. Poggio, ICCV, 2007 * chances: 10%~20%
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Our method has 8% better performance on average





What is next:
beyond feedforward models: limitations

Psychophysics
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What is next:
beyond feedforward models:
limitations

« Recognition in clutter is increasingly difficult

* Need for attentional bottleneck (Wolfe, 1994)
perhaps in V4 (see Gallant and Desimone and
models by Walther + Serre)

* Notice: this is a “novel” justification for the need
of attention!



performance (hit)
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Limitations: beyond 50 ms:
model not good enough

Head

Close-body

Medium-body

Far-body

no mask condition

model

20 ms SOA (ISI=0 ms)

(Serre, Oliva and Poggio, PNAS, 2007)
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FA ~16% for humans (except no mask with 14%) and the model ~18%

 


Ongoing work....

Top-down
feature-based attention Saliency map
(project 4,5 and 6) computation

(project 3,4,5 and 6)

,1 PFC ~~x|  FEF LIP

Top-down
spatial

& V4

T

Bottom-up signal from lower areas




Attention and

—— baseline

detection acuracy

bottom-up cortical
op-down
feedbacks
3 4 5
num. items
e es ationtion 4+ Model implementation of

Wolfe's guided search (1994)

4+ Parallel (feature-based top-
down attention) and serial

sanning ualposiions (spatial attention) to suppress
0.1 4 — w| top-down feature-basesd attention Clutter (TSOStOS et al)

Chikkerur Serre Walther Koch & Poggio in prep

04 0.6
1-precision



Example Results




What i1s next

* Image inference: attentional or Bayesian
models?

* Why hierarchies? Beyond a model towards a
theory

* Against hierarchies and the ventral stream:
subcortical pathways



What iIs next: image inference,
backprojections and attentional mechanisms

* Normal recognition by humans (for long times) is
much better

« Normal vision is much more than categorization
or identification: image
understanding/inference/parsing




ATtention-pased modeils witn nigh-level
specialized routines

Feedforward model + backprojections implementing featural and the
spatial attention may improve recognition performance

Backprojections also access/route information in/from lower areas to
specific task-dependent routines in PFC (?). Open questions:

-- Which biophysical mechanisms for routing/gating?

-- Nature of routines in higher areas (eg PFC)?



Bayesian models

Analysis-by-synthesis models, eg probabilistic inference in
the ventral stream: neurons represent conditional probabilities
of the bottom-up sensory inputs given the top-down
hypothesis and converge to globally consistent values

High-level abstract
representation of a face

b5,

Fainted edge located
in high-res. buffer

Lee and Mumford, 2003; Dean,2005 :Rao, 2004; Hawkins, 2004; Ullman, 2007, Hinton, 2005



What i1s next

* Image inference: attentional or Bayesian
models?

* Why hierarchies”? Beyond a model, towards a
theory

« Against hierarchies and the ventral stream:
subcortical pathways (Bar et al., 2006, ...)



Notices of the American Mathematical Society (AMS), Vol. 50, No. 5,
537-544, 2003.

The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale

How then do the learning machines described in the theory compare with brains?

0 One of the most obvious differences is the ability of people and animals to
learn from very few examples.

O A comparison with real brains offers another, related, challenge to learning theory. The “learning algorithms”
we have described in this paper correspond to one-layer architectures. Are hierarchical architectures

with more layers justifiable in terms of learning theory?

a Why hierarchies? For instance, the lowest levels of the hierarchy may represent a dictionary of features
that can be shared across multiple classification tasks.

0 There may also be the more fundamental issue of SAMple complexity. Thus our ability of learning from
just a few examples, and its limitations, may be related to the hierarchical architecture of cortex.



Formalizing the hierarchy: towards a theory

Axiom: foh:v— [0,1]isin I'm(v)if f € I'm(v') and h € H,
that is the restriction of an image is an image and similarly for H'. Thus

foh:v—[0,1] e Im(v)if f € Im(v')and h € H,
foh':v' —[0,1] e Im(v')if f € Im(R)and h' € H'.



We formulate the model in the following stages:

1. The process starts with some initial distance on I'm(v) provided by

do(f,9) = d(f,9) = [|f — gllp: (D)

where ||- ||, is an appropriate L, norm (|| f|[, = ([, |f(z)|Pdu(z))*/?), for
the space of functions I'm(v).

Then we define a first stage Neural Similarity as

N/ (f) = mindy(f o h,t), f € Im(v/) (2)

Thus N* : Im(v') — RY can be defined! by N'(f)(t) = N} (f).

We define the derived distance (with |[N1(f)||, = ([, [N}[Pdp(t))'/¥) on
I'm(v') as

dy(f.9) = |IN'(f) = N'(9)||, (3)

Since N'(f) and N'(g) are elements in RY, this norm makes sense (we
use no L, norm on I'm(v')).

2. We now repeat the process by defining the second stage Neural Similarity

as Smale, S., T. Poggio, A.
Caponnetto, and J. Bouvrie.

No(f) = g, di(f o W 0). f € Im(B), ¢ €T" @ Derived Distance: towards a
The new derived distance is now on Im(R) mathematical theorv of
visual cortex, CBCL Paper,
H(£,9) = |IN*(f) = N*(9)llp- () Massachusetts Institute of
Clearly this process could continue if appropriate higher level patches Technology, Cambridge,

were defined. MA, November, 2007.


http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf
http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf
http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf

From a model to a theory: math results on
unsupervised learning of invariances and of a dictionary of shapes
from image sequences

The time evolution of the stimulus i1s modelled by a discrete time stationary
process taking values in Im(Sq)

F = {F‘T}‘TEE

in the following F' = {F!} .z is i.i.d. with F.
Let us associate to every v € V(j) a denumerable partition of Im(5q)

Ui.- = {":_?u ':k] }Fe

Proposition 2. For cvery v € V(j), defining

E K. (R, (Fo), R.(F}))]
E ||| Ky(Ro(Fo)) — Ko(Ry(Fr)))|

cr=2|1+.

7]
I{J
it holds

Err,(c*) < Err,.

Caponetto, Smale and Poggio, in preparation



(Obvious) caution remark!!!

There is still much to do before we understand
vision...

and the brain!
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