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Motivation for studying vision: 
trying to understand how the brain works

•
 

Old dream of all 
philosophers and more 
recently of AI: 
–

 
understand how the 
brain works

–
 

make intelligent 
machines 



This tutorial: 
using a class of models to summarize/interpret 

experimental results

•
 

Models are cartoons of reality eg
 

Bohr’s model of the 
hydrogen atom

•
 

All models are “wrong”
•

 
Some models can be useful summaries of data and some 
can be a good starting point for more complete theories



1.
 

Problem of visual recognition, visual cortex
2.

 
Historical background

3.
 

Neurons and areas in the visual system
4.

 
Data and feedforward

 
hierarchical models

5.
 

What is next?



The problem: recognition in natural images 
(e.g., “is there an animal in the image?”)

Presenter
Presentation Notes
Any task can be made arbitrarily easy or difficult…



How does visual cortex solve this problem? 
How can computers solve this problem?

Desimone & Ungerleider

 

1989

dorsal 
stream:
“where”

ventral 
stream:
“what”

Presenter
Presentation Notes
In first approximation: Two streams, different tasks
dorsal: where, spatial
ventral: what, identity
we are interested in OR (triangle theory<->appp<->ns and it’s also sexy), ventral stream: How can the brain recognize 3D objects, even under different viewpoints?
--> look @ what’s happening in the ventral stream: How do we know allthis?
--> Jon: What do ns do & how can we analyze it?



A “feedforward” version of the problem: 
rapid categorization

Movie courtesy of Jim DiCarlo

Biederman

 

1972; Potter 1975; Thorpe et al 1996

SHOW RSVP 
MOVIE



Riesenhuber & Poggio 1999, 2000;                                
Serre Kouh

 

Cadieu

 

Knoblich

 

Kreiman & Poggio 2005; 
Serre Oliva Poggio 2007

*Modified from (Gross, 1998)

A model of the ventral stream which is also an algorithm 

[software available online]

Presenter
Presentation Notes
For the past several years we have developed a computational theory of object recognition in the ventral stream of the visual cortex. 
The model closely follows the organization of the visual cortex (color encodes correspondence between stages/layers of the model and cortical areas)
Units in the model mimic as closely as possible the tuning properties of cells in corresponding cortical areas. That is, the parameters governing the tuning properties of the units (eg, frequency bandwidth, RF sizes, complexity of the preferred stimulus, etc) were constrained by neural data. 



…solves the problem 
(if mask forces feedforward processing)…

human-

 observers (n 
= 24) 80%

Model 82%

Serre Oliva & Poggio 2007

•

 

d’~ standardized error 
rate 
•

 

the higher the d’, the 
better the perf.

Human 80%

Presenter
Presentation Notes
We tried simpler computer vision systems and they could not do the job!
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Object recognition for computer vision: 
personal historical perspective
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Examples: Learning Object Detection: 
Finding Frontal Faces

•
 

Training Database
•

 
1000+ Real, 3000+ VIRTUAL

•
 

50,0000+ Non-Face Pattern

Sung & Poggio 1995



~10 year old CBCL computer vision work: pedestrian 
detection system  in Mercedes test car now 

becoming a product (MobilEye)




Object recognition in cortex: 
Historical perspective
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Some personal history: 
First step in developing a model: 

learning to recognize 3D objects in  IT cortex

Poggio & Edelman 1990

Examples of Visual Stimuli



An idea for a module for view-invariant 
identification

Architecture that 
accounts for 
invariances to 3D 
effects (>1 view 
needed to learn!)

Regularization 
Network (GRBF)
with Gaussian kernels

View Angle

VIEW-
 INVARIANT, 

OBJECT-
 SPECIFIC

UNIT

Prediction: 
neurons become

 view-tuned 
through learning

Poggio & Edelman 1990



Learning to Recognize 3D Objects in  IT 
Cortex

Logothetis

 

Pauls

 

& Poggio 1995

Examples of Visual Stimuli

After human psychophysics 
(Buelthoff, Edelman, Tarr, 
Sinha, …), which supports 
models based on view-tuned 
units... 

… physiology!



Recording Sites in Anterior IT

LUN
LAT

IOS

STS

AMTS
LAT
STS

AMTS

Ho=0

Logothetis, Pauls

 

& Poggio 1995

…neurons tuned to 
faces are intermingled 

nearby….



Neurons tuned to object  views as 
predicted by model

Logothetis

 

Pauls

 

& Poggio 1995



A “View-Tuned” IT Cell
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Presenter
Presentation Notes
VT cell found in the experiment:
<show>:	pref. Stim,	specific,	VP tuning



But also view-invariant object-specific neurons 
(5 of them over 1000 recordings)

Logothetis

 

Pauls

 

& Poggio 1995



Scale Invariant Responses of an IT Neuron
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View-tuned cells: 
scale invariance (one training view only) motivates present model

Logothetis

 

Pauls

 

& Poggio 1995
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From “HMAX”

 

to the model now…

Riesenhuber & Poggio 1999, 2000;  
Serre Kouh

 

Cadieu

 

Knoblich

 

Kreiman & 
Poggio 2005; Serre Oliva Poggio 2007
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Neural Circuits

Source: Modified from Jody Culham’s

 

web slides



Neuron basics

spikes

INPUT= pulses or 
graded potentials

COMPUTATION 
= Analog

OUTPUT = 
Chemical



Some numbers

•
 

Human Brain
–

 
1011-1012

 

neurons
 
(1 million flies ☺)

–
 

1014- 1015

 

synapses

•
 

Neuron
–

 
Fundamental space dimension: 

•

 

fine dendrites : 0.1 µ

 

diameter; lipid bilayer

 

membrane : 5 nm 
thick; specific proteins : pumps, channels, receptors, 
enzymes

–
 

Fundamental time length : 1 msec



The cerebral cortex

Human

 

Macaque
Thickness

 

3 – 4 mm

 

1 – 2 mm
Total surface area

 

~1600 cm2 ~160 cm2

 
(both sides)

 

(~50cm diam)

 

(~15cm diam) 

Neurons /mm²

 

~10⁵/ mm2 ~ 10⁵/ mm2 
Total cortical neurons

 

~2 x 1010

 

~2 x 109

Visual cortex

 

300 –

 

500 cm2

 

80+cm2
Visual Neurons

 

~4 x 109 ~109 neurons



Gross Brain Anatomy

A large percentage of the cortex devoted 
to vision

Presenter
Presentation Notes
In brain, different regions are involved in different tasks
(and the brain areas are conveniently colored to reflect this, too…)
vision, audition, somsens, motor… Learning & adaptation everywhere!
---> Q: What are the comp.mech.?
Why can we hope that there are common computational mech.?
---> common hardware: CORTEX



The Visual System

[Van Essen & Anderson, 1990]

Presenter
Presentation Notes
In our studies of learning & informations processing in the brain, we focus on the visual system --- most extensively researched modality

areas connected



V1: hierarchy of simple and complex cells

LGN-type 
cells

Simple 
cells

Complex 
cells

(Hubel & Wiesel 1959)

Presenter
Presentation Notes
LGN-type cells, dot of light, bright dot on a dark bgd and vice-versa

From dots of light to “oriented bars”, slightly larger RFs, either white bar on black bgd or vice-versa, sensitive to the location of the bar within RF

Bar detector, insensitive to polarity of contrast (white on black or black on white)
Larger RF
Insensitive to the location of the bar within RF

How does that work?



V1: Orientation selectivity

Hubel & Wiesel 
movie



V1: Retinotopy



(Thorpe and Fabre-Thorpe, 2001)



Reproduced from [Kobatake & Tanaka, 1994] Reproduced from [Rolls, 2004]

Beyond V1: A gradual increase in RF 
size



Reproduced from (Kobatake

 

& Tanaka, 1994)

Beyond V1: A gradual increase in the 
complexity of the preferred stimulus



AIT: Face cells

Reproduced from (Desimone et al. 1984)



AIT: Immediate recognition

Hung Kreiman Poggio & DiCarlo 2005

identification

categorization

See also Oram

 

& Perrett

 

1992; Tovee

 

et al 1993; Celebrini

 

et al 1993; 
Ringach

 

et al 1997; Rolls et al 1999; Keysers

 

et al 2001
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Source: Lennie,

 

Maunsell, Movshon

The ventral stream



(Thorpe and Fabre-Thorpe, 2001)

We consider feedforward architecture 
only



Our present model of the ventral stream: 
feedforward, accounting only for “immediate 

recognition”

•
 

It is in the family of “Hubel-Wiesel”
 

models (Hubel & 
Wiesel, 1959; Fukushima, 1980; Oram

 

& Perrett, 1993, Wallis & Rolls, 1997; Riesenhuber & 
Poggio, 1999; Thorpe, 2002; Ullman

 

et al., 2002; Mel, 1997; Wersing

 

and Koerner, 2003; LeCun

 
et al 1998; Amit

 

& Mascaro

 

2003; Deco & Rolls 2006…)

•
 

As a biological model of object recognition in the 
ventral stream it is perhaps the most quantitative 
and faithful to known biology (though many 
details/facts are unknown or still to be 
incorporated)



Two key computations

Unit types Pooling Computation Operation

Simple 
Selectivity / 

template 
matching

Gaussian-

 
tuning / 
and-like

Complex Invariance Soft-max / 
or-like



¾Max-like operation (or-like)

¾Complex units

¾Gaussian-like tuning 
operation (and-like)

¾Simple units



Gaussian tuning

Gaussian tuning in IT 
around 3D views

Logothetis

 

Pauls & Poggio 1995

Gaussian tuning in 
V1 for orientation

Hubel & Wiesel 1958



Max-like operation

Max-like behavior in V1

Lampl

 

Ferster Poggio & Riesenhuber 2004 
see also Finn Prieber & Ferster 2007

Gawne

 

& Martin 2002

Max-like behavior in V4



(Knoblich Koch Poggio in prep; Kouh & Poggio 2007; Knoblich Bouvrie Poggio 2007)

Biophys. implementation

•
 

Max and Gaussian-like tuning 
can be approximated with 
same canonical circuit using 
shunting inhibition

Presenter
Presentation Notes
ADD CABLE AND CITE RELEVANT PEOPLE



Of the same form as model 
of MT (Rust et al., Nature 
Neuroscience, 2007

Can be implemented by 
shunting inhibition (Grossberg

 

1973, Reichardt

 

et al. 1983, 
Carandini

 

and Heeger, 1994) 
and spike threshold variability 
(Anderson et al. 2000, Miller 
and Troyer, 2002)

Adelson

 

and Bergen (see also 
Hassenstein

 

and Reichardt, 
1956)



•
 

Generic, overcomplete
 dictionary of reusable shape 

components (from V1 to IT) 
provide unique representation 
–

 

Unsupervised learning (from 
~10,000 natural images) during a 
developmental-like stage

•
 

Task-specific circuits     (from IT 
to PFC)
–

 

Supervised learning: ~ Gaussian 
RBF



S2 units

•
 

Features of moderate complexity (n~1,000 
types)

•
 

Combination of  V1-like complex units at 
different orientations

•
 

Synaptic weights w 
learned from natural 
images

•
 

5-10 subunits chosen 
at random from all 
possible afferents 
(~100-1,000)

stronger 
facilitation

stronger 
suppression



Nature Neuroscience -

 

10, 1313 -

 

1321 (2007) / Published online: 16 September 2007 | doi:10.1038/nn1975

Neurons in monkey visual area V2 encode combinations of orientations
Akiyuki Anzai, Xinmiao Peng & David C Van Essen



C2 units

•
 

Same selectivity as S2 units but 
increased tolerance to position and 
size of preferred stimulus

•
 

Local pooling over S2 units with 
same selectivity but slightly 
different positions and scales

•
 

A prediction to be tested:   S2 units 
in V2 and C2 units in V4?

Presenter
Presentation Notes
obviously the existence of simple vs. complex units is a prediction from the model, which still needs to be shown experimentally.

One difficulty is that it would be very hard to tell apart say a S2 from a C2 unit, you would have to be able to isolate each cell subunit. Then the S2 units which project onto a C2 units all have the same selectivity which is also they share the same selectivity which is also the selectivity of the C2 unit onto which they project. So the only difference between S2 and C2 unit is simply the range of invariance (position and scale).

To a first approximation this is what was recently reported by Hegde and VanEssen




A loose hierarchy

•
 

Bypass routes along with main routes: 
•

 

From V2 to TEO (bypassing V4) (Morel & Bullier 1990; Baizer et al 1991; Distler et al 1991; 
Weller & Steele 1992; Nakamura et al 1993; Buffalo et al 2005)

•

 

From V4 to TE (bypassing TEO) (Desimone et al 1980; Saleem et al 1992)

•
 

“Replication”
 

of simpler selectivities from lower 
to higher areas

•
 

Richer dictionary of features with various 
levels of selectivity and invariance

Presenter
Presentation Notes
In an even more extrem version Later I am going to show that this is important 



•

 

V1:
•

 

Simple and complex cells tuning

 

(Schiller et al 1976; Hubel & Wiesel 1965; Devalois et al 1982)
•

 

MAX operation in subset of complex cells (Lampl et al 2004)

•

 

V4:
•

 

Tuning for two-bar stimuli

 

(Reynolds Chelazzi & Desimone 1999)
•

 

MAX operation

 

(Gawne et al 2002)
•

 

Two-spot interaction

 

(Freiwald et al 2005)
•

 

Tuning for boundary conformation (Pasupathy & Connor 2001, Cadieu

 

et al., 2007)
•

 

Tuning for Cartesian and non-Cartesian gratings

 

(Gallant et al 1996)

•

 

IT:
•

 

Tuning and invariance properties

 

(Logothetis et al 1995)
•

 

Differential role of IT and PFC in categorization

 

(Freedman et al 2001, 2002, 2003)
•

 

Read out data (Hung Kreiman Poggio & DiCarlo 2005)
•

 

Pseudo-average effect in IT

 

(Zoccolan Cox & DiCarlo 2005; Zoccolan Kouh Poggio & DiCarlo 2007)

•

 

Human:
•

 

Rapid categorization (Serre Oliva Poggio 2007)
•

 

Face processing (fMRI + psychophysics)

 

(Riesenhuber et al 2004; Jiang et al 2006)

(Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005)

Comparison w| neural data

Presenter
Presentation Notes
-- For the past several years we have performed a number of quantitative comparisons between the tuning of units in the model and cells in corresponding cortical areas

Here there are 3 colors for 3 types of data,
Yellow is for data that I used to actuallyconstrain the model. Here those are V1 data that I used to get a population of V1 simple and complex units which mimics the tuning properties of cortical cells.

Then there are the green data, which were already predicted by the original model and which are still consistent with the new model

Then the red color indicates data which are consistent with the new model. These are data which in some cases already existed and were provided to us by the authors of the corresponding studies. There are also data (give example) which were actually collected in collaboration with experimentalists (eg Miller, DiCarlo) following a prediction from the model.

I am not going to be able to guide you through all of these data but I am going to show you a few key examples... 






Comparison w| V4

Pasupathy & Connor 2001

Tuning for 
curvature and 

boundary 
conformations?



V4 neuron tuned to 
boundary conformations

ρ
 

= 0.78

Most similar model C2 unit

Pasupathy & Connor 1999

No parameter fitting!

Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005

Presenter
Presentation Notes
Finally I would like to point out that the learning rule generates S2 units that seem to be congruent with V4, explain figures, etc… Charles Cadieu and Minjoon Kouh in our lab have shown that the population of S2/C2 units generated is compatible with data from several group (at the population level). We can talk about it in the discussion (I have slides) if everybody is interested…



J Neurophysiol 98: 1733-1750, 2007. First published June 27, 2007

A Model of V4 Shape Selectivity and Invariance
Charles Cadieu, Minjoon Kouh, Anitha Pasupathy, Charles E. Connor, Maximilian 

Riesenhuber and Tomaso Poggio 

Presenter
Presentation Notes
More recently Charles Cadieu and Minjoon Kouh pushed the analysis further and showed that it is indeed possible to fit the model C2 units to single cells in V4 (the weights are no longer learned from natural images but learned using a greedy learning algorithm to fit single cells).



V4 neurons               
(with attention directed away 

from receptive field)

(Reynolds

 

et al 1999)

C2 units
Reference (fixed)

Probe (varying)

= response(probe) –response(reference)

= 
re

sp
 (p

ai
r)

 –
re

sp
 (r

ef
er

en
ce

) Prediction: Response of the pair is predicted to fall 
between the responses elicited by the stimuli alone

(Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005)

Presenter
Presentation Notes
Biased competition model predicts that with attention away line should pass through origin and should get a > o coef



Agreement w| IT Readout data

Hung Kreiman Poggio DiCarlo 2005

Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005

Presenter
Presentation Notes
Here is an example; for instance the read out data that Gabriel showed earlier. The level of invariance to position and scale is actually predicted by the model.
One key result from this study is that the visual system is extremely fast. Once the visual signal reaches IT which is where they recorded from in the study. From the very first spikes, one can already read out object category and identity.



Remarks

•
 

The stage that includes (V4-PIT)-AIT-PFC 
represents a learning network of the Gaussian 
RBF type that is known (from learning theory) to 
generalize well 

•
 

In the theory the stage between IT and ‘’PFC”
 

is 
a linear classifier –

 
like the one used in the read-

 out experiments
•

 
The inputs to IT are a large dictionary of 
selective and invariant features



Rapid categorization

SHOW ANIMAL / 
NON_ANIMAL 

MOVIE




Database collected by Oliva & Torralba

Presenter
Presentation Notes
Any task can be made arbitrarily easy or difficult…



Rapid categorization task (with mask to test 
feedforward model)

Animal present
or not ?

30 ms ISI

20 ms

Image

Interval 
Image-Mask

Mask
1/f noise

80 ms

Thorpe et al 1996; Van Rullen

 

& Koch 2003; Bacon-Mace et al 2005

Presenter
Presentation Notes
We used 30 ms ISI, with 20 ms presentation this is equivalent to SO% of 50ms. This is a fairly long SOA 

MODEL IS FEEDFOWARD (YOU CAN ASK ME DURING QUESTION TIME)
Mask tries to block feedback in visual cortex



…solves the problem (when mask forces 
feedforward processing)…

human-

 observers (n 
= 24) 80%

Model 82%

Serre Oliva & Poggio 2007

•

 

d’~ standardized error 
rate 
•

 

the higher the d’, the 
better the perf.

Human 80%

Presenter
Presentation Notes
We tried simpler computer vision systems and they could not do the job!



Further comparisons

•
 

Image-by-image correlation:
–

 
Heads:             ρ=0.71 

–
 

Close-body:     ρ=0.84  
–

 
Medium-body: ρ=0.71

–
 

Far-body:         ρ=0.60

•
 

Model predicts level of performance on rotated 
images (90 deg and inversion)

Serre Oliva & Poggio PNAS 2007



Source: Bileschi & Wolf

The street scene project

Presenter
Presentation Notes
Here is another application of the model. The work was performed by Stan Bileschi and Lior Wolf. Lior was a postdoc in the lab and this was part of Stan’s PhD thesis. This is kind of the old AI dream where ideally you would like to input such image as the street scene image on the left and you would like the system to automatically parse the image into its main objects.
What they did is to use the features produced by the model that were computed over small windows at all positions and scales in the image that they classified as being either one of 7 possible objects: cars, pedestrians, bikes, trees, buildings, skies and road.




The StreetScenes Database

Object car pedestrian bicycle building tree road sky

# Labeled Examples 5799 1449 209 5067 4932 3400 2562

3,547 Images, all taken with the same camera, of the same type of scene, and 
hand labeled with the same objects, using the same labeling rules.

http://cbcl.mit.edu/software-datasets/streetscenes/

Presenter
Presentation Notes
TODO:  Add 420 True Labels to this slide.
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Examples



•

 

HoG:                      
(Dalal & Triggs 2005) 

•

 

Part-based system: 
(Leibe et al 2004) 

•

 

Local patch correlation:     
(Torralba et al 2004) 

Serre Wolf Bileschi

 

Riesenhuber & Poggio PAMI 2007



Serre Wolf Bileschi

 

Riesenhuber & Poggio PAMI 2007
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What is next

•
 

A challenge for physiology: disprove basic 
aspects of the architecture

•
 

Extensions to color and stereo
•

 
More sophisticated unsupervised, 
developmental learning in V1, V4, PIT: how?

•
 

Extension to time and videos
•

 
Extending the simulation to integrate-and-fire 
neurons (~ 1 billion) and realistic synapses: 
towards the neural code



What is next

•
 

A challenge for physiology: disprove basic 
aspects of the architecture

•
 

Extensions to color and stereo
•

 
More sophisticated unsupervised, 
developmental learning in V1, V4, PIT: how?

•
 

Extension to time and videos
•

 
Extending the simulation to integrate-and-fire 
neurons (~ 1 billion) and realistic synapses: 
towards the neural code



•
 

Generic dictionary of shape 
components (from V1 to IT) 
–

 

Unsupervised learning during a 
developmental-like stage learning 
dictionaries of “templates”

 

at 
different S levels

•
 

Task-specific circuits     (from IT 
to PFC)
–

 

Supervised learning

Layers of cortical processing units



Learning the invariance from temporal 
continuity

w| T. Masquelier & S. Thorpe (CNRS, France)

Foldiak

 

1991; Perrett et al 1984;  Wallis & Rolls, 1997; Einhauser

 
et al 2002; Wiskott & Sejnowski 2002; Spratling 2005

✦
 

Simple cells learn 
correlation in space   
(at the same time)

✦
 

Complex cells learn 
correlation in time

SHOW MOVIE

Presenter
Presentation Notes
~19 hours of video ~10^6 frames
developmental like learning stage



What is next

•
 

A challenge for physiology: disprove basic 
aspects of the architecture

•
 

Extensions to color and stereo
•

 
More sophisticated unsupervised, 
developmental learning in V1, V4, PIT: how?

•
 

Extension to time and videos
•

 
Extending the simulation to integrate-and-fire 
neurons (~ 1 billion) and realistic synapses: 
towards the neural code



The problem
Training Videos Testing videos

*each video~4s, 50~100 frames

bend jack jump

pjump run walk

side wave1 wave2

Dataset from (Blank et al, 2005)




See also (Casile

 

& Giese 2005; Sigala

 

et al, 2005)

Previous work: 
recognizing biological motion 

using a model of the dorsal stream 

Adapted from (Giese & Poggio, 2003)



Baseline Our system

KTH Human 81.3 % 91.6 %

UCSD Mice 75.6 % 79.0 %

Weiz. Human 86.7 % 96.3 %

Average 81.2 % 89.6 %

* chances: 10%~20%HH. Jhuang, T. Serre, L. Wolf* and T. Poggio, ICCV, 2007

Multi-class recognition accuracy

Presenter
Presentation Notes
Our method has 8% better performance on average






What is next: 
beyond feedforward models: limitations

Serre Oliva Poggio 2007

Zoccolan

 

Kouh

 

Poggio DiCarlo 2007

Reynolds Chelazzi & 
Desimone 1999

Psychophysics
V4

IT



What is next: 
beyond feedforward models: 

limitations

•
 

Recognition in clutter is increasingly difficult
•

 
Need for attentional bottleneck (Wolfe, 1994) 
perhaps in V4 (see Gallant and Desimone and 
models by Walther + Serre)

•
 

Notice: this is a “novel”
 

justification for the need 
of attention!



model

20 ms SOA (ISI=0 ms)

80 ms SOA (ISI=60 ms)

50 ms SOA (ISI=30 ms)

no mask condition

(Serre, Oliva and Poggio, PNAS, 2007)

Limitations: beyond 50 ms: 
model not good enough

Presenter
Presentation Notes
FA ~16% for humans (except no mask with 14%) and the model ~18%
 



Ongoing work….



Attention and 
cortical 

feedbacks

✦
 

Model implementation of 
Wolfe’s guided search (1994)

✦
 

Parallel (feature-based top-
 down attention) and serial 

(spatial attention) to suppress 
clutter (Tsostos et al) 

Chikkerur

 

Serre Walther Koch & Poggio in prep

num. items

de
te

ct
io

n 
ac

ur
ac

y

Face detection: 
scanning vs. attention



Example Results



What is next

•
 

Image inference: attentional
 

or Bayesian 
models?

•
 

Why hierarchies? Beyond a model towards a 
theory

•
 

Against hierarchies and the ventral stream: 
subcortical

 
pathways



What is next: image inference, 
backprojections and attentional mechanisms

••
 

Normal recognition by humans (for long times) is Normal recognition by humans (for long times) is 
much much betterbetter

••
 

Normal vision is Normal vision is much much more than categorization more than categorization 
or identification: image or identification: image 
understanding/inference/parsingunderstanding/inference/parsing



••

 

FeedforwardFeedforward

 

model + model + backprojectionsbackprojections

 

implementing implementing featuralfeatural

 

and the and the 
spatial attention may improve recognition performance spatial attention may improve recognition performance 

••

 

BackprojectionsBackprojections

 

also access/route information in/from lower areas to also access/route information in/from lower areas to 
specific taskspecific task--dependent routines in PFC (?). Open questions:  dependent routines in PFC (?). Open questions:  

----

 

Which biophysical mechanisms for routing/gating? Which biophysical mechanisms for routing/gating? 

----

 

Nature of routines in higher areas (Nature of routines in higher areas (egeg

 

PFC)?PFC)?

Attention-based models with high-level 
specialized routines



Analysis-by-synthesis models, eg
 

probabilistic inference in 
the ventral stream: neurons represent conditional probabilities 
of the bottom-up sensory inputs given the top-down 
hypothesis and converge to globally consistent values

Bayesian models 

Lee and Mumford, 2003; Dean,2005  ;Rao, 2004; Hawkins, 2004; Ullman, 2007, Hinton, 2005



What is next

•
 

Image inference: attentional
 

or Bayesian 
models?

•
 

Why hierarchies? Beyond a model, towards a 
theory

•
 

Against hierarchies and the ventral stream: 
subcortical

 
pathways (Bar et al., 2006, …)



How then do the learning machines described in the theory compare with brains? 

�One of the most obvious differences is the ability of people and animals to 
learn from very few examples.

� A comparison with real brains offers another,  related, challenge to learning theory. The “learning algorithms”
we have described in this paper correspond to one-layer architectures. Are hierarchical architectures 
with more layers justifiable in terms of learning theory?

�Why hierarchies? For instance, the lowest levels of the hierarchy may represent a dictionary of features 
that can be shared across multiple classification tasks.

� There may also be the more fundamental issue of sample complexity. Thus our ability of learning from 
just a few examples, and its limitations, may be related to the hierarchical architecture of cortex. 

Notices of the American Mathematical Society (AMS), Vol. 50, No. 5,
537-544, 2003.

The Mathematics of Learning: Dealing with Data
Tomaso

 

Poggio

 

and Steve Smale



Formalizing the hierarchy: towards a theory



Smale, S., T. Poggio, A. 
Caponnetto, and J. Bouvrie. 
Derived Distance: towards a 
mathematical theory of 
visual cortex,

 

CBCL Paper, 
Massachusetts Institute of 
Technology, Cambridge, 
MA, November, 2007. 

http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf
http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf
http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf


From a model to a theory: math results on 
unsupervised learning of invariances and of a  dictionary of shapes 

from image sequences

…

Caponetto, Smale

 

and Poggio, in preparation



(Obvious) caution remark!!!

There is still much to do before we understand 
vision…

and the brain!
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