
We thank all the reviewers for their insightful comments!1

R1: (1) Regarding Theorem 1, yes, global indices are only needed in ordered cases. We add this to emphasize that for2

unordered/unindexed cases, isomorphic DAGs will be encoded the same. (2) The onto relation from graph structure to3

computation to function is indeed a nice and clear way to differentiate them; thank you. We will try to differentiate these4

concepts better. (3) We will try to improve the title. (4) The darker plot might be because the two principal components5

on the right explain less variance of training data than those on left. Thus, along the two principal components on the6

right we will see less points from the training distribution. These out-of-distribution points tend to decode to not very7

good Bayes nets, thus are darker. We validated this guess by checking the variance explained, which are 59% (left)8

and 17% (right). This also indicates that our model learns a more compact latent space. Thank you for raising this9

question. We will add this possible explanation in the revised version. (5) NAONet is not a generative model, and uses10

task-specific grammars to encode only neural architectures. This paper focuses equally on DAG generation and DAG11

optimization. We will consider a fair comparison in the future when particularly applying our model to NAS.12

R2: For the points in “quality”: (1) Our proposal supports batching. We have used a batch size of 32 and 128 in the13

experiments. The implementation is not hard; please refer to the submitted code for details. (2) The O(N2) decoding14

steps is basically a design choice, rather than a limitation of the model. For example, one can make it O(N) by15

predicting all edges of a node at the same time. We choose the current decoding scheme because it can model the16

dependence between edges, but will discuss its possible simplifications in the revised version. (3) RNN/LSTM is not17

applicable to DAGs. In 3.3, we state RNN is a special case of our model only when DAG is reduced to a chain of nodes.18

That said, we did include the GraphRNN baseline which uses RNNs to generate rows of adjacency matrix. (4) Thanks19

for suggesting the baseline DeepGMG from [Li et al 2018]. We agree it is beneficial to show D-VAE’s advantages over20

DeepGMG in modeling DAGs. As we cannot find the official code of DeepGMG, we strictly followed the paper to21

implement it ourselves. Several modifications are made to adapt it to our tasks. First, we make it a VAE by equipping it22

with a 3-layer message passing network as the encoder (using its own MP functions). Second, we feed in nodes using a23

topo-order instead of the original random order (and see much improvement). Third, the sampled edges only point to24

new nodes to ensure acyclicity. Then, we trained DeepGMG on our 6-layer NN dataset. We did a lot of hyperparameter25

tuning, but the training loss never reached near zero. In comparison, D-VAE can be perfectly trained to near zero loss.26

This results in DeepGMG’s worse reconstruction accuracy (Table 1). This nonzero loss also acts like an early stopping27

regularizer, making DeepGMG generate more unique graphs. Note that in our tasks, reconstruction accuracy is much28

more important than uniqueness, since we need embeddings to perfectly remap to their original structures after latent29

space optimization. Further, the predictive ability of DeepGMG embeddings is also worse, indicating it is less suitable30

to perform optimization in its latent space.31

32

Generative ability (%) Predictive ability

Methods Accuracy Validity Uniqueness Novelty RMSE Pearson’s r

D-VAE 99.96 100.00 37.26 100.00 0.384±0.002 0.920±0.001
DeepGMG [Li et al 2018] 94.98 98.66 46.37 99.93 0.433±0.002 0.897±0.001
D-VAE (SMP) 92.35 99.75 65.98 100.00 0.455±0.002 0.885±0.001

D-VAE on 12-layer nets 95.23 99.88 90.34 100.00 0.488±0.001 0.875±0.001

D-VAE on mixed data 70.45 90.76 77.12 100.00 - -

(5) Thanks for suggesting the ablation study.33

We replace D-VAE’s asynchronous message34

passing with Simultaneous Message Passing35

to make the baseline “D-VAE (SMP)”. This36

model also has nonzero training loss, similar37

to DeepGMG. Thus, the uniqueness is higher but the reconstruction accuracy is lower (Table 1). Regarding latent38

space predictivity, it is worse than D-VAE and DeepGMG. (6) Regarding small graphs, we added one experiment39

that trains our model on 20,000 12-layer neural networks. It achieves similarly good performance (Table 1). The best40

12-layer network found after Bayesian optimization achieves a CIFAR-10 test error of 3.85%, comparable to many41

state-of-the-art NAS results in macro space. We cannot really test D-VAE on NNs with hundreds or thousands layers,42

since such datasets are hardly available. However, due to the combinatorial search space complexity, people also do not43

search very deep neural architectures, but build deep ones by searching shallow cells and stacking them multiple times.44

We leave this to future work. To show that our model is not limited to fixed-size graphs, we also train it on 20,00045

graphs mixed of 6, 8, 10, 12-layer neural networks (5,000 each). The results are shown in Table 1’s last row.46

We will add all the above results into a revised version. Finally, we would like to respectfully argue that although our47

proposal is inspired by many previous excellent works, it is not simply assembling them for a new problem. Instead, it48

has made multiple customized innovations for DAGs where theoretical justifications are provided. For instance, the49

injectivity w.r.t. computation (Theorem 1) ensures the two DAGs (representing the same computation) in main paper’s50

Figure 1 are encoded the same by asynchronous MP, where simultaneous MP will fail by encoding them differently.51

R3: Thank you for acknowledging that generating DAGs is an important new problem to study! For the comparison52

with DeepGMG [Li et al 2018], please refer to R2-(4) and Table 1. We will also add a discussion of the differences53

between the two models. Basically, DeepGMG is not tailored for DAGs – there is no guarantee of acyclicity; DeepGMG54

uses simultaneous message passing to encode graph structures, while D-VAE uses asynchronous message passing to55

encode computations; after each decision step, DeepGMG requires multiple message passings for all nodes, while56

D-VAE does one message passing only for the target node; and DeepGMG is not a VAE, thus does not have a latent57

space for DAG optimization. We will add a thorough description of our training strategy in the main manuscript too.58


