
We thank all reviewers and we will modify the paper to clarify each of the points raised, as discussed/clarified below.1

Similar points across reviewers: (1) Re statistical significance of empirical results, our presentation was misleading2

and instead we will provide confidence intervals (CIs) that clarify/quantify the statistical significance of our results.3

I.e., the 95% CIs of all mean scores are relatively small for all operators; e.g., such CIs for cartpole are < ±0.3 for4

each operator, much smaller than the differences in their mean scores. (2) Re results for constant β, we will expand5

the discussion in Sec 4.5 (L338-341) noting constant β performs worse, and will provide the corresponding numerical6

results; e.g., mean cartpole scores for β = 1 and β ∼ U [0, 1) are 187 compared with 191 for β ∼ U [0, 2). (3) Re defns7

of terms, instead of providing a reference as in L92-L94, we will add such defns. E.g.: stochastic ordering (s.o.): r.v.8

X is stochastically ≤ to r.v. Y if P[X > z] ≤ P[Y > z],∀z; convex ordering (c.o.): r.v. X is < r.v. Y under c.o. iff9

E[f(X)] ≤ E[f(Y )], ∀ convex functions f . (4) Re theoretical results establishing benefits of our approach, we will10

provide some more intuition. For any (x, a) in eq (4) where the action a is not the optimal action, there will very often11

(i.e. for many k) be instances where Vk(x) > Qk(x, a), so eq (4) will make Q(x, a) (eventually) deviate more from12

V (x); OTOH, for action a s.t. Q(x, a) = V (x), then Vk(x) > Qk(x, a) will only happen rarely, and thus eq (4) will13

not affect the end value of V (x). These both reflect the concepts of optimality preserving and action gap increasing.14

Moreover, we observe that the multiplier in front of Vk(x) − Qk(x, a) (i.e. βk) is desired to be large individually,15

but its overall efforts should not be so large as to affect V (x). We therefore introduce a family of RSOs, where βk16

is allowed to take on any value, but its average remains < 1. Furthermore, we establish that greater variability in βk17

will lead to larger action gaps and that s.o. (c.o.) in βk will lead to s.o. (c.o.) in the action gaps. (5) Re theoretical18

proofs, because our RSOs introduce probabilistic elements on top of the original MDP, it is natural for us to employ19

probabilistic arguments in our analysis/proofs. E.g., in L421-424, we use the lim sup and lim inf for set sequences for20

the ease of derivations. The probabilistic nature of the problem also affords us the liberty to exploit weak convergence21

limits (convergence in probability) to identify the limit of Vk(x) after establishing a stronger a.s. convergence for Vk(x).22

More importantly, the stochastic nature of the problem allows us to consider s.o. (c.o.), which are common machinery23

in probability theory and which we exploit to establish important orderings of performance among different RSOs.24

While some of this may not be very familiar within the AI community, we believe these additions broaden the spectrum25

of ideas and methodologies that can be exploited to help improve solutions of fundamental problems in RL and beyond.26

R1. (1) Benefit of stochastic βk is addressed by our theoretical results (Thms 3.2-3.4) and by our empirical results27

demonstrating significant improvements under stochastic βk. (2) L260 ff. were intended to note that distributions with28

lower means and variances performed worse than U [0, 2) in our experiments, which we will clarify/expand. Further29

Thms 3.2-3.4 are intended to help find the best βk sequence. (3) Indeed, the submission contained a typo in eq (9): πbk30

in both inequalities should be a, which is the focus of the arguments that follow. (4) We should have explicitly stated31

that Vk(x) + fk is uniformly upper bounded from the facts that the rewards are bounded functions and γ ∈ (0, 1). (5)32

In L421-L424, we establish the (right) inequality in eq. (9) by considering the limit superior and limit inferior of the33

sequence of sets on which the probabilities are calculated. Therefore, we examine events that happen infinitely often for34

the lim sup and all but finite exceptions for lim inf . (6) We view the problem of finding the maximally efficient operator35

as one of finding a sequence of βk that produces dominating performance. We believe that the statement is correct from36

this viewpoint. But the statement does not discuss how the optimization should be conducted, where different methods37

could have different implications. We will clarify these points. (7) The value function V (x) indeed does not change,38

but Q(x, a) changes and this leads to a larger action gap. This should then lead to more efficient ways of ultimately39

finding V (x) via updating Q(x, a), as indicated in refs [5] and [12].40

R2. To address concerns of the role of randomness, we will expand L263-265 which notes the same trends were41

observed when we varied exploration of the ε-greedy algorithm over a wide range of ε (even for deterministic operators).42

R3. (1) We appreciate the comment on “robust” in other contexts, and will be more careful/clearer in our usage. (2) Re43

proof of Thm 3.1, the inequality in L408 follows from Vk(x) ≥ Qk(x, a),∀a, by defn of Vk(x). The 3rd relation below44

L411 follows directly from the defn of TB and the 4th relation below L411 is directly due to the order relation of TB45

and Tβk
. Lastly, regarding the a.s. convergence and its weak form, convergence in probability: By L417, we already46

established that Vk(x) converges a.s., so the purpose of the next paragraph is to identify the limit, as stated; For that47

purpose, we only need to identify the limit of the weak convergence, since a.s. convergence naturally implies that Vk(x)48

also weakly converges to the limit. (3) Re proof of Thm 3.2, it is quite standard to prove results by introducing a general49

function with minimally restrictive properties (increasing) and then appropriately using this function and its properties;50

the ordering E[f(Q̂k+1)] ≥ E[f(Q̄k+1)] leads to Q̂k ≥st Q̄k because of the properties of f(·) and the defn of s.o.51

(≥st). Similarly, in the last part of the proof, f(·) is used to establish the desired s.o. of the action gap. (4) Re proof of52

Thm 3.3, with the addition of the defn of c.o., the proof follows along similar lines to that of Thm 3.2 as stated. (5)53

The proof of Thm 3.4 is not based on induction and is proven using a basic relation between variance and conditional54

expectation, with the direct derivation establishing the general result for each k. (6) Q-learning provides convergence to55

the values of all Q(x, a),∀x, a, asymptotically over time. Our theoretical results study the behavior of Q(x, a) under56

different operators, establishing the benefits of our RSOs over other (deterministic) operators such as in [5].57


