
Reviewer #1 In response to the suggestion to control for initialization of A and B, we explored several alternatives1

to Ā, including: (a) the identity matrix, (b) the all-zero matrix, (c) the identity shifted down one row (i.e., a queue2

of length d), (d) only the diagonals of Ā, (e) only the off -diagonals of Ā, and (f) the original Ā with its diagonals3

perturbed by some small ε. We kept all else consistent with the original setup (i.e., no training on Ā and B̄) and4

retrained the model for each alternative. We found that (c) achieved 87.58% test accuracy, consistent with RNN5

results from Chandar et al. Performance for (f) was a cusp centered about ε = 0. Although we only had time to6

collect a few datapoints, we obtained 94.73% for ε = −0.01, 96.97% for ε = −0.001, and 96.59% for ε = +0.0017

(compared to 97.15% for ε = 0). All other choices (a, b, d, e), as well as larger values of |ε|, resulted in chance-level8

performance (~10%) on every epoch – indicating poorly initialized weights. Setting Ā, B̄ to be trainable did not help.9

These results empirically support the theory that the LMU’s linear dynamical memory is critical for its success.10

We have observed that further tuning of Ā, B̄, and θ is unnecessary for these tasks (lines 103–104) and often counter-11

productive. However, training these parameters improved performance for small θ in the memory capacity task.12

The challenge in the neural precision section relates to substituting “rate” neurons that emit 64-bit floating point values13

every time-step, with spiking neurons that emit temporally sparse 1-bit values (i.e., binary events that are mostly zero).14

The error mentioned on line 268 is the RMSE between the ideal input to a rate neuron representing a dimension, and15

the weighted summation of spike events representing that dimension. This scaling is notable because it converges to16

zero as the number of neurons are increased (this is nontrivially shown by the referenced theorem). This guarantees17

that, given enough neurons, there is no systematic error that could prevent the system from approaching the ideal. The18

Poisson neuron was highlighted since it is entirely memoryless. For this, or for other neuron models, spikes provide19

a trade-off between energy (e.g., in neuromorphic hardware) and model accuracy (Blouw et al., 2019). Lastly, we20

note that Voelker and Eliasmith (2018) show that spiking neural nonlinearities perform a similar role to the hidden21

nonlinear units in the LMU. We hope to include these clarifications in a rewrite.22

Reviewer #2 All experiments were run on GPUs using Keras and TensorFlow. We will clarify this early in the paper23

and focus on the impact of the LMU earlier in the abstract, in a rewrite. Our GitHub page will mention hardware24

specs, instructions for running on GPUs or CPUs, and provide examples of how to use the LMU within Keras. We25

view our work as an important step to realizing the performance benefits of RNNs on low-power spiking neuromorphic26

chips, which historically have been eclipsed by the accuracy and parallelism of GPUs. To support this, the code for27

the neuromorphic implementations will also be made available.28

Equation 7 was motivated by the need to project all potentially relevant information into a single memory, and is29

similar to the design of the NRU (line 81). We resume this discussion with reviewer #3. We believe that Figure30

3 demonstrates the potential for this theory to scale (note the 1e8 on the t-axis). In this case showing that we can31

process an input sequence containing a billion elements using limited resources.32

Reviewer #3 Phased LSTMs address similar challenges by way of a novel “time gate” designed to filter updates at33

particular frequencies. By using the phased-lstm-keras package, and an otherwise identical experimental setup,34

we achieved 83.63% test accuracy on psMNIST with phased LSTMs. The model is sized to ~102k parameters, uses35

the default leak on the time gate (α = 0.001), and is consistent with the sequential (non-permuted) MNIST example36

included in their repository. Reducing α by 10x, which makes it closer to a vanilla LSTM, and using ~165k parameters,37

improved accuracy to 89.61% (c.f., vanilla LSTM =⇒ 89.86%). Setting α = 0 provided no further improvements.38

This suggests that although phasing improves LSTMs for the sequential MNIST task, it does not appear to help for39

the permuted task variant wherein the input sequences no longer contain prominent cyclic features.40

Equations 4, 6, and 7 are much closer to the referenced NRU than the LSTM in terms of the design of the module.41

Only when d = 1 does the layer becomes somewhat analogous to a single-unit LSTM, in that its feedback dynamics42

behave as a controllable leaky integrator for the hidden state. For larger d, a distinguishing feature is the particular43

choice of Ā and B̄ which couple linear units to optimally represent a continuously sliding window of ut. Equation 344

establishes a mathematical link between the Legendre polynomials, the memory vector (m), and the history of ut.45

Multiple dimensions are taken into account by way of the encoding vectors (ex, eh, and em), which project across all46

dimensions. But as noted, ut is one-dimensional, since there is exactly one memory vector in a given layer. Extensions47

that use multiple memories (each with its own encoders and memory kernel) will be considered in future work (lines48

310–311). This would enable the network to maintain multiple windows in parallel within the same layer.49

The choice of d, together with the frequency content of the window, determines the adversarial sequences. In the50

continuous-time domain, polynomial windows of degree � d are adversarial (by equation 3 and orthogonality of51

Legendre polynomials). In the discrete-time domain, the most difficult sequences are those with power at the Nyquist52

frequency. For example, we find that both Gaussian noise and Brownian motion require approximately 2d dimensions53

in order to accurately maintain a window of d time-steps. Further mathematical analysis is required.54


