We share the same motivations as CCA-based multi-view learning, but we feel our formulation is more general and

We made minor changes to our layer implementations and acquired access to infrastructure which allowed us to train

which are individually weakly-predictive, but which contain complementary information about some shared cause.

Training stability resembles standard supervised learning, without the dramatic instability characteristic of GANs. We

sufficient information for near-optimal prediction. E.g., we may maximize mutual info between patch-level features

better suited to use with large models and datasets. E.g., unlike [1, 2], we do not assume that each view contains

seven days on eight V100 GPUs. The closest concurrent methods are trained on hundreds of TPUs and achieve slightly

now achieves over 62% on ImageNet after training for two days on four V100 GPUs, and over 68% after training for

unclear notation in our original ablation results (see Fig. 1c). As described in the caption, removing either aspect of

substantial benefits (+20% on ImageNet) and is necessary for achieving competitive results.

For a clearer comparison with the original version of DIM, we extend our ablation results to include simultaneous

ablation of data augmentation and multiscale prediction (see Fig. 1d). Removing both data augmentation and multiscale

prediction reverts AMDIM to the original DIM, but with our new encoder. Thus, these results compare AMDIM with

DIM while controlling for the encoder architecture. Adding data augmentation and multiscale prediction to DIM has

Response to Reviewers:

We thank the reviewers for taking time to carefully review our paper and provide helpful feedback. We believe we can

address the reviewers’ comments well, and will use them to improve the paper’s clarity. We also have updated results

which strengthen the story and conclusions of our paper without requiring changes to the main technical content.

We made minor changes to our layer implementations and acquired access to infrastructure which allowed us to train

larger models in less time. This proved fruitful: using a larger encoder raised AMDIM’s performance substantially

on ImageNet from 60.2% to 68.1%, and from 50.0% to 55.0% on the Places205 transfer task. See Fig. 1a and 1b

for more information. This outperforms prior results by 12% and concurrent results by 7%. We achieve these results

using a smaller encoder and over an order of magnitude less compute than the strongest concurrent results. AMDIM

now achieves over 62% on ImageNet after training for two days on four V100 GPUs, and over 68% after training for

seven days on eight V100 GPUs. The closest concurrent methods are trained on hundreds of TPUs and achieve slightly

over 61%. Training on 4-8 good GPUs is accessible to a wide range of researchers, and within the normal range for

competitive deep learning benchmarks. The code for reproducing our results is available online.

For a clearer comparison with the original version of DIM, we extend our ablation results to include simultaneous

ablation of data augmentation and multiscale prediction (see Fig. 1d). Removing both data augmentation and multiscale

prediction reverts AMDIM to the original DIM, but with our new encoder. Thus, these results compare AMDIM with

DIM while controlling for the encoder architecture. Adding data augmentation and multiscale prediction to DIM has

substantial benefits (+20% on ImageNet) and is necessary for achieving competitive results.

For R3: The claim that: “...multiscale has the largest effect, by a large margin.” is incorrect, and could be due to

unclear notation in our original ablation results (see Fig. 1b). As described in the caption, removing either aspect of

data augmentation causes a larger performance drop than removing multiscale prediction. Note: “color jitter” in (c) includes both types of color-based augmentation from (b).

For R1: Fig. 3a in the paper shows seven nearest images to a query image \(x_q \) based on cosine similarity between \(f_1\)'s, and

and the similarities between \(f_1(x_q) \) and each \(f_2(x_r) \) from each retrieved image \(x_r \). The similarities \(\phi_1(f_1(x_q)) \) and \(\phi_2(f_2(x_r)) \)

are visualized as a heatmap below each retrieved image \(x_r \). The heatmaps match the spatial layout of the \(7 \times 7 \) grid of

\(f_2 \) features the encoder provides for each \(x_r \). Intuitively, each heatmap shows which part of each \(x_r \), AMDIM thinks

is most similar to \(x_q \). We believe the natural transformations provided by multiple views of the same context from

different viewpoints will lead to improved features, and we’re currently investigating this using video.

For R2: We use two tricks to stabilize training – i.e. regularizing the squared InfoNCE logits and soft clipping them

via tanh – which seems reasonable in the context of deep neural networks. AMDIM still works well without these

tricks, though removing them reduces performance (see Fig. 1b and 1c). Our updated model is simpler. It uses the

same regularization weight for all logits and does not use coordinate prediction, which we have removed from the paper.

Training stability resembles standard supervised learning, without the dramatic instability characteristic of GANs. We

use \(f_1, f_2, \) and \(f_3 \) because the other features available from our encoder increased compute cost without significantly

affecting performance. AMDIM performs well over a wide range of choices about encoder architecture, optimization

objective, and training hyperparams. We will add discussion of how CCA and multi-view learning relate to our work.

We share the same motivations as CCA-based multi-view learning, but we feel our formulation is more general and

better suited to use with large models and datasets. E.g., unlike [1, 2], we do not assume that each view contains

sufficient information for near-optimal prediction. E.g. we may maximize mutual info between patch-level features

which are individually weakly-predictive, but which contain complementary information about some shared cause.

Hand-wavily, correlations seem limiting compared to MI bounds which do not assume particular functional forms.