
Method ImageNet Places205
ResNet50v2 (sup) 74.4 61.6
AMDIM (sup) 71.3 57.4
Rotation 55.4 48.0
Exemplar 46.0 42.7
Patch O↵set 51.4 45.3
Jigsaw 44.6 42.2
CPC - large 48.7 n/a
CPC - huge 61.0 n/a
CMC - large 60.1 n/a
AMDIM - small 63.5 n/a
AMDIM - large 68.1 55.0

(a)

STL10 ImageNet
(linear, MLP) (linear, MLP)

AMDIM 93.4, 93.8 61.7, 62.6
+strong aug 94.2, 94.5 62.7, 63.1
�color jitter 90.3, 90.6 57.7, 58.8
�random gray 88.3, 89.4 53.6, 54.9
�random crop 86.0, 87.1 53.2, 54.9
�multiscale 92.6, 93.0 59.9, 61.2
�stabilize 93.5, 93.8 57.2, 59.5
�aug and multiscale 74.2, 75.6 39.1, 41.3

(b)

STL10 ImageNet
(linear, MLP) (linear, MLP)

AMDIM 93.6, 93.8 58.8, 60.9
-color jitter 83.7, 85.2 41.0, 44.0
-resized crop 88.4, 89.4 49.3, 52.6
-multiscale 91.6, 92.4 57.3, 60.0
-stabilize n/a, n/a 57.0, 58.5
-coordinates 92.6, 93.3 58.8, 60.6

(c)

Figure 1: (a): Updated main results. We made the model deeper and removed most batchnorm. These results are strong and
reproducible. (b): Updated ablation results. We split color-based augmentation into two parts: (i) color jitter and (ii) random
grayscale. Models are the size of AMDIM-small from (a), but trained for fewer epochs due to resource constraints. (c): Our original
ablation results. Performance drops when we remove any of the components which AMDIM adds to DIM. When we remove data
augmentation (“-color jitter” or “-resized crop”) performance drops from 58.8% to 41.0% or 49.3%. When we remove multiscale
prediction (“-multiscale”) performance drops from 58.8% to 57.3%. Removing data augmentation causes a much larger performance
drop than removing multiscale prediction. Note: “-color jitter” in (c) includes both types of color-based augmentation from (b).
Response to Reviewers:1

We thank the reviewers for taking time to carefully review our paper and provide helpful feedback. We believe we can2

address the reviewers’ comments well, and will use them to improve the paper’s clarity. We also have updated results3

which strengthen the story and conclusions of our paper without requiring changes to the main technical content.4

We made minor changes to our layer implementations and acquired access to infrastructure which allowed us to train5

larger models in less time. This proved fruitful: using a larger encoder raised AMDIM’s performance substantially6

on ImageNet from 60.2% to 68.1%, and from 50.0% to 55.0% on the Places205 transfer task. See Fig. 1a and 1b7

for more information. This outperforms prior results by 12% and concurrent results by 7%. We achieve these results8

using a smaller encoder and over an order of magnitude less compute than the strongest concurrent results. AMDIM9

now achieves over 62% on ImageNet after training for two days on four V100 GPUs, and over 68% after training for10

seven days on eight V100 GPUs. The closest concurrent methods are trained on hundreds of TPUs and achieve slightly11

over 61%. Training on 4-8 good GPUs is accessible to a wide range of researchers, and within the normal range for12

competitive deep learning benchmarks. The code for reproducing our results is available online.13

For a clearer comparison with the original version of DIM, we extend our ablation results to include simultaneous14

ablation of data augmentation and multiscale prediction (see Fig. 1b). Removing both data augmentation and multiscale15

prediction reverts AMDIM to the original DIM, but with our new encoder. Thus, these results compare AMDIM with16

DIM while controlling for the encoder architecture. Adding data augmentation and multiscale prediction to DIM has17

substantial benefits (+20% on ImageNet) and is necessary for achieving competitive results.18

For R3: The claim that: “...multiscale has the largest effect, by a large margin.” is incorrect, and could be due to19

unclear notation in our original ablation results (see Fig. 1c). As described in the caption, removing either aspect of20

data augmentation causes a larger performance drop than removing multiscale prediction. We will edit to clarify this.21

For R1: Fig. 3a in the paper shows seven nearest images to a query image xq based on cosine similarity between f1s, and22

the similarities between f1(xq) and each f7(xr) from each retrieved image xr. The similarities φ1(f1(xq))>φ7(f7(xr))23

are visualized as a heatmap below each retrieved image xr. The heatmaps match the spatial layout of the 7× 7 grid of24

f7 features the encoder provides for each xr. Intuitively, each heatmap shows which part of each xr AMDIM thinks25

is most similar to xq. We believe the natural transformations provided by multiple views of the same context from26

different viewpoints will lead to improved features, and we’re currently investigating this using video.27

For R2: We use two tricks to stabilize training – i.e. regularizing the squared InfoNCE logits and soft clipping them28

via tanh – which seems reasonable in the context of deep neural networks. AMDIM still works well without these29

tricks, though removing them reduces performance (see Fig. 1b and 1c). Our updated model is simpler. It uses the30

same regularization weight for all logits and does not use coordinate prediction, which we have removed from the paper.31

Training stability resembles standard supervised learning, without the dramatic instability characteristic of GANs. We32

use f1, f5, and f7 because the other features available from our encoder increased compute cost without significantly33

affecting performance. AMDIM performs well over a wide range of choices about encoder architecture, optimization34

objective, and training hyperparams. We will add discussion of how CCA and multi-view learning relate to our work.35

We share the same motivations as CCA-based multi-view learning, but we feel our formulation is more general and36

better suited to use with large models and datasets. E.g., unlike [1, 2], we do not assume that each view contains37

sufficient information for near-optimal prediction. E.g, we may maximize mutual info between patch-level features38

which are individually weakly-predictive, but which contain complementary information about some shared cause.39

Hand-wavily, correlations seem limiting compared to MI bounds which do not assume particular functional forms.40


