
We thank the reviewers for valuable feedback and will make the suggested changes. We’ve included additional experiments to address the1

existing concerns/areas of improvements. Reviewer 2: sec. C provides additional results on non-vehicle classes (i.e. bike & ped.) Reviewer 3:2

here we compare MFP directly to PRECOG[A] on their released CARLA data in Tab. 1. MFP significantly outperforms previous SOTA in [A]3

for 5 agent joint predictions. We also quantitatively evaluated hypothetical inference in Tab. 2. We report new results using the minMSD4

sample metric. Reviewer 5: in sec. B, we created a CARLA-based RL env. and task and proposes a simple MPF-based shooting policy (a form5

of MPC). We compared it with several SOTA model-free methods, demonstrating faster training and leading to a safer or more robust policy.6

Reviewer 6: We will release code in the near future and make the suggested clarifications. Please see detailed responses below.7

REV2: The learning algorithm box was included in the Appendix. The E-step computes the true posterior distribution (step 21 of Alg. 1). MFP8

is a general framework and does not assume any vehicle specific dynamics or priors. MFP can perform multi-agent joint predictions of any9

objects, not just vehicles. (e.g. N-body problem or physics-based interactions). Sec. C. shows new results on bike and ped. prediction tasks.10

REV3: We will clarify Tab.1 in the paper and add derivations of Eqs. 5, 6. DESIRE[21] is variational. Variational learning (e.g. EM or11

VAEs) is principled with certain guarantees on the ELBO. “inter." means interactive and hypothetical means the ability to perform conditional12

inference by fixing a particular agent’s future trajectory. NLL is computed in closed form and is normalized by the num of timesteps and13

agents. For NGSIM the coordinate is in feet. Ablative studies to test how latent modes change could be performed by removing certain agents14

from the scene. NGSIM results did not use visual context, as visual context (grey lines of Fig.5) did not improve performance in a significant15

way. MFP of Tab. 1 below use 100x100x4 LIDAR rasterization as visual context. Our CARLA trajectories are 5 seconds at 20 Hz. The KL16

term (L171) differs from cross-entropy by a constant term (not dependent on θZ), so we can use them interchangeably. We compare with17

[A]’s CARLA dataset and MFP achieves new state-of-the-art on the most challenging 5-agents joint prediction task in Town02. [A] is closely18

related to MFP but one difference is that MFP can handle arbitrary number of agents while [A] (if we’re not mistaken) requires a fixed num of19

N agents. We will certainly cite and compare/contrast with [A], and we thank the authors of [A] for providing their dataset.20

REV5: We thank the reviewer for a thoughtful review and one of the original motivations was better decision making. We will add discussions21

to the referred RL papers. MFP can be used to learn better p(s′|s, a) for model-based RL. In sec. B, we connect predictions to RL by creating22

a hard self-driving RL task in CARLA. We use MFP to learn good predictive models and then our policy (a form of MPC) can use Shooting23

methods[H] to check for future collisions within τ meters. We show episodic reward curves and also test for robustness/safety by changing the24

distribution of initial conditions of other agents. We achieve superior performance compare to SOTA model-free Deep RL methods.25

REV6: The mentioned "Multi-modal ..." paper is a previous version of the CSLSTM paper [8] which we cite and compare with. PoV26

normalization rotates and translate the observations of other agents to an ego-centric frame and helps learning. Z variables are enumerated27

during the E-step. NLL is simply neg. log-likelihood and can be computed in closed form. MFP-1 is better than CSLSTM due our dynamic28

attention mechanism. MFP-1 is just a baseline to compare to other unimodal methods. Hypothetical refers to Sec 3.2 and variational learning is29

desirable as it is probabilistically sound. We will clarify these points and open source our code in the near future.30

A. COMPARISON TO PRECOG [A] (CARLA). We train MFP (with and without LIDAR; 3, 5, and 7 modes) on the PRECOG CARLA31

dataset [A]. MFP is trained on 60,701 Town01 sequences for 300K updates. We report apples-to-apples comparison using minMSD metric32

m̂K=12 on Town02 testset for all 5 agents jointly. MFP (green) achieve SOTA results in Tab. 1. A quantitative eval of sec. 3.2. is in Tab. 2.33

Table 1: CARLA (PRECOG) Town02. minMSD computed exactly as Eq. 13 of [A].
minMSD DESIRE SocialGAN R2P2-MA ESP[A] MFP5 ESP[A] MFP3 MFP5 MFP7
(meters) [21] [C] [D] no LIDAR no LIDAR

5 agents joint 2.422 1.141 0.770 1.102 0.842 0.675 0.641 0.553 0.496
m̂K=12 ±0.017 ±0.015 ±0.008 ±0.011 ±0.025 ±0.007 ±0.018 ±0.013 ±0.011

Table 2: Hypothetical Rollouts. Ex. from Fig. 4(a).
m̂K=10 MFP3 MFP3+Hypothetical

(meters) Veh1(blue) Veh2(green) Veh1(blue) Veh2(green)

minMSD 2.081± 0.25 2.765± 0.18 1.764± 0.13 2.199± 0.14
minFDE 3.137± 0.18 3.419± 0.31 2.732± 0.12 2.742± 0.26

34

B. CARLA RL ENVIRONMENT - UNPROTECTED LEFT TURN. We create an unprotected left turn task in CARLA Town05, where35

the objective is for Ego to safely complete an unprotected (no traffic lights) turn. Two oncoming vehicles have random initial speeds. MFP36

can be used in model-based RL in multiple ways: first is similar to Dyna-Q[I], where a MFP can be used to generate imagination rollouts37

to be added to the experience buffer. The second is an online planning algorithm (Shooting), where Ego’s future action sequences are38

optimized to maximize for the planning reward under the learned MFP dynamics model. We compare this with several SOTA model-free39

methods and show that MFP-Shooting requires less sample complexity and is more robust to variations in test environment parameters.

Start

Goal +10 reward

Crash: -50 reward
Action: acceleration
Observations: x, y, vel., heading

Ego agent

path

Other agents
Table 3: Testing crash rates per 100 trials. Test
env. modifies the velocity & acceleration of
other vehicles to test for generalization.
∆ Env. Params DDPG[E] PPO2[F] C51[G] MFP-S MFP-S

τ=5m τ=10m

vel : +0m/s 2% 1% 0% 0% 0%
vel : +5m/s 7% 4% 5% 1% 0%
vel : +10m/s 13% 5% 7% 0% 0%
acc : +1m/s2 9% 3% 2% 1% 0%

40 C. BIKE AND PEDESTRIAN PREDICTIONS. We perform additional experiments on the Stanford Drone Dataset (SDD) [J] for ped.41

and bike predictions. We train MFP on videos 0,1,2,4,5 of the deathCircle scene and test on video3. Red and blue lines are the mean predicted42

trajectory of two modes and the green is the predicted multi-modal log-probability density. MFP performs significantly better than baselines.

Past
Future
Mode-1
Mode-2

Figure 1: Left: predicted bike trajs. Right: selected future prob. density for bikes.

Table 4: SDD: bike and ped. predictions on ‘deathCircle’
scene, video 3. Past:3 secs. Future:5 secs. m̂K=12.

metric Cons Vel. RNN CSLSTM MFP3 MFP5

B
ik

e minMSD(pixels) 10.31 8.75 8.44 5.34 4.77
Neg. LL(nats) - 5.67 5.25 2.03 1.74

Pe
d. minMSD(pixels) 4.33 3.28 3.01 2.61 2.14

Neg. LL(nats) - 3.39 3.07 1.44 1.31
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