Sincere thanks to all the reviewers for the time and effort spent on reviewing our work.

Response to reviewer 1: Thank you very much for your thoughtful feedback.

The role of diversity: Submodularity is known as a diversity inducing property for probability distributions. Our contribution in establishing a weak submodular property therefore sheds light on this. Furthermore, \(\alpha \) is a tunable parameter that allows the user to adjust the level of diversity desired: as \(\alpha \to 0 \) one obtains increasingly uniform distributions (uniform being the least diversity inducing distribution). Whilst outside the scope of our results, making \(\alpha \gg 1 \) results in an extreme preference for diversity: probability mass concentrates at the mode of the original distribution. That is, the “most diverse” set. We can make these connections more clear in the final copy of the paper. More broadly SLC is an extension of SR which is well known to have some strong negative dependence properties.

Mixing time bound \(2^d \): Although the mixing time bound is \(2^d \), \(d \) is a user-chosen parameter and may often be quite small (much smaller than \(n \)). Furthermore it is a substantial improvement on \(2^n \) that one obtains by a more naïve analysis. Indeed the user would do well to consider mixing time as one of their desiderata when selecting \(d \). The experiments section provides evidence that the mixing time bound could in fact be tightened. The difficulty of proving mixing time bounds for samplers is notorious and usually omitted all together, so we consider our contribution here to be important nonetheless.

Mixing time bound argument simplicity: Whilst the idea of “lifting” to the homogenous case and using existing results may be attractively simple, how to actually do this lifting in a way that yields an algorithm that empirically works and has guarantees turned out to be a thorny question. In particular, a simpler proof based on closure under homogenization that applies for stricter classes of distributions (e.g., Strongly Rayleigh) does not apply here. Overcoming this difficulty required much more theoretical work. We view it as a virtue that this work combines a simple high-level argument with a careful and precise analysis to obtain theoretical guarantees.

Matroid assumptions: To the absolute best of our knowledge there are no known examples of non-homogenous SLC distributions that have support not equal to the set of independent sets of a matroid. Indeed we consider it a theoretical direction for future work to show that this is always true. In [10] it is shown that for the homogenous case, the support is the set of bases of a matroid. This, and other theory developed in that work suggest a fundamental connection between SLC polynomials and matroids. We are very happy to include a discussion of this in the final copy.

Diversity in mixing time bound: Indeed you are correct, the \(\alpha \) constant only enters the bound through \(\nu(S_0) \). However, bounds that depend on the distribution only through the starting point probability in this way are the norm in related works [e.g. 2,5,40] and are a direct consequence of the deep theory of Markov chain mixing developed in [18,19].

Response to reviewer 2: Thank you very much for your kind words, useful suggestions, and thorough inspection.

Metropolis-Hastings novelty: Whilst the sampler is most certainly a MH sampler, the key question addressed throughout the sampling section is: what is the right proposal distribution? Our contribution was the choosing of the correct homogenized distribution to “lift” to, and to then demonstrate that with this choice we can prove mixing time bounds on the algorithm. This was very much a non-trivial question that required some careful analysis to answer.

Empirical contribution: The experiments section provides empirical evidence that the mixing time is faster than our bound. They are designed to point to an interesting and challenging direction for future work: refining the mixing time bound. The difficulty of proving mixing time bounds for samplers is notorious and usually omitted all together, so we consider our theoretical contributions here to be important nonetheless.

Mathematical terminology: We believe the terminology most likely to cause problems to be the references to matroid theory. In response to Reviewer 1 we will include a discussion of these assumptions in the final copy. We can also take that opportunity to reassure readers unfamiliar with matroids that they play only a minimal technical role and can be largely disregarded by all except those who want to delve into the theory of SLC distributions.

Minor comments: Thank you for pointing out typos. The definition of OPT was given in the first paragraph of Section 5. For points (b),(d) we will make these points clear in the final copy.

Response to reviewer 3: Thank you very much for your supportive feedback and thoughts, we greatly appreciate it.

Empirical contributions: Whilst not being large scale tests by any means, they serve a particular function in this paper to point to an interesting and challenging direction for future work: refining the mixing time bound.

Bridging fields: We are pleased that you recognize this contribution. Indeed, we view this as a main contribution of the paper; it opens up SLC modelling as a new line of work to the ML community.

Further empirical work: We decided to leave the careful and thorough application of the new methods introduced to future work. We see this as an important topic in its own right and worthy of a separate piece of work.