
We thank the reviewers for taking the time to read and comment on our paper. Below we first group the comments of1

Reviewers #1 and #2 by topic, and then address the more critical concerns of Reviewer #3.2

Scope of applications. Reviewers #1 and #2 find the work novel and interesting, but comment that it might cater3

to a small community. While our focus on optical random projections could suggest so, the methodology is widely4

applicable: our method linearizes any imaging, computation, or communication system in which the phase is important5

but only the intensity is measured, regardless of whether the transmission matrix (TM) is known or unknown. While6

mostly optical, these include X-ray and terahertz imaging, electron lasers, etc. The key is to have some control over the7

input. We give two concrete, relevant examples related to reference [A] suggested by Reviewer #1 (thank you!):8

1) Once the TM of the medium is calibrated, imaging still requires phase retrieval. We present the method for an9

unknown A, but it applies just the same with A known. If one introduces a set of interferers in the scene whose10

response is known, then the phase can be obtained rapidly via our proposed method;11

2) More interestingly, our method reduces TM learning to a linear system (vs quadratic). The same Algorithm 112

determines the phase of the measurements, yielding a linear system for every row ofA. Finally, unknown TMs remain13

relevant, as calibration is slow and many media do change over time. We stop here for brevity, but indeed feel that the14

method can have a broad impact. The above examples can be easily incorporated into the manuscript.15

Suggestions for improvement. The reviewers suggested to improve the clarity of Section 2.3 and experiment and16

figure descriptions, which we are happy to do. Reviewer #2 also commented as follows:17

1) The related work does not clearly show the gap. We feel that the cited work puts our work in context with the existing18

literature: Tasks which do not recover the measurement phase [9, 17, 18] have limited performance. Transmission19

matrix estimation [6, 14] is computationally heavy for large resolution / dynamic media. Our algorithm recovers the20

phase in real time since it only requires computation of small SVDs, e.g., 6× 6.21

2) Difference in performance between MDS and MDS-GD. Fig. 2b and 3b use different metrics (relative error vs good22

bits); note that a 1 bit difference which is clearly visible in 3b amounts to only 0.8% relative error. The difference23

between Fig. 3a and 3b is that in 3a there is only quantization, while in 3b there is thresholding, hence larger bit error.24

Reviewer #3. The reviewer summarizes our work as developing an algorithm for the measurement phase retrieval25

(MPR) problem in an OPU. Rather, we propose a general algorithm for the MPR, OPU being an example application.26

Multiple signals and binary inputs. The reviewer writes that the paper is confusing, questioning the need for multiple27

frames. We explain this in l. 134-140: in short, for a single input ξ1, since the matrixA is unknown (and so the global28

phase of each row), we can choose the phase of 〈ai, ξ1〉 arbitrarily and the MPR is vacuous (cf. rotation invariance of29

complex Gaussians, l. 108-113). We thus use the first frame as a reference and align future frames with it via Procrustes30

analysis (l. 157-172), yielding correct relative phases. The reviewer next states that “The supp. mat. says that the31

problem in the main text considers only binary signals.” We respectfully disagree. The main text considers general32

signals, and simulation experiments use general signals as evident from l. 216-226, 237-249. Only the particular33

hardware we use for real-world experiments has a binary DMD. This is standard and due to the use of cheap, fast34

modulators developed for movie projectors, as opposed to the slow and costly liquid crystal tech.35

The reviewer then writes “The organization is not good, either. Assumptions such as ’DMD is binary’ seems to be36

popped up all of a sudden from nowhere.” Again, we find this surprising since it appears only on p. 7 when we show37

results with real hardware (instead of stopping at numerics): “Next, we test the linearity error with a real hardware38

OPU. The OPU gives 8-bit unsigned integer measurements. A major challenge is that since the DMD is binary, the39

inputs need to be binary.”. This does not influence the organization of the paper nor the algorithm. It merely affects40

reference design. The reviewer continues “The paper also cited some other algorithm without explaining what the41

problems other algorithms solve.” Unfortunately we are not sure what this refers to. (Perhaps: the pseudocode for42

RSVD is given in the supplement; the algorithm is standard.)43

Randomized SVD. As RSVD uses multiple random projections, our phase estimates must be consistent over many44

frames (l. 108-113, Problem 1), hence this is more challenging than a matrix–vector product. This experiment shows45

that the linearization is good enough for real-life applications. To answer the reviewer’s question “Perhaps the authors46

just think this is a fun supplementary discovery?”: This is not the case. Showing that our phases are sufficiently good for47

RSVD on real hardware is a strong demonstration of the method’s practicality in a context relevant for machine learning48

and scientific computing. Benchmarks for standard and randomized SVD on standard hardware, and optical randomized49

SVD would be interesting, but those will be very much hardware-dependent and therefore out of the scope of this paper.50

With large-enough inputs, optical computation inevitably becomes faster than both CPU and GPU, as its timing is51

essentially independent of the input size. To give an order of magnitude, the optical unit we use is faster than GPUs52

for input/output dimensions above a few thousands—more than the presented MNIST problem, but much below the53

size of real-life problems. For example, Tropp et al., Streaming Low-Rank Matrix Approximation with54

an Application to Scientific Simulation. applies a variant of RSVD to climate data of up to 75 GB (!).55


