
I am thankful to the reviewers for their careful reading of the paper and their helpful comments. I will fix/revise all1

minor issues and add an analysis of the function approximation error, which shows that the bounds are non-vacuous. I2

also emphasize the motivation of this work. Before answering some of the comments in detail, I would like to emphasize3

that this work opens up a new approach to represent uncertainty of the returns in RL. It provides the fundamental4

theoretical guarantees that one needs before developing sophisticated algorithms, and empirically evaluating them.5

R4: Non-vacuousness of the bounds in Theorems 2 and 3?6

A: The bounds are well-behaving under mild conditions for p = 1. It is true that ‖ε̃‖∞,p might be infinity for p > 17

unless we have restrictive conditions, but its behaviour is reasonable (to be specified) for p = 1. Thanks to your8

comment on this issue, I investigated the approximation error properties for some reasonable choices of F . The result,9

briefly speaking, is that if the reward distribution is smooth, a band-limited function class Fb provides an approximation10

error that goes to zero as b increases. Furthermore, if the first s absolute moments of the reward distribution is finite11

(uniformly for all x ∈ X ), the CVF Ṽ (·;x) belongs to Cs([−b, b]) ∩ Fb. This leads to well-behaving covering number,12

which can be used to obtain a convergence rate for estimation error.13

Let us define Fb as the space of CF with bandwidth of b, i.e., Ṽ (ω;x) is zero for |ω| > b. Assume that the reward14

function is β-smooth in the sense that c0|ω|−β ≤ |R̃(ω;x)| ≤ c1|ω|−β for |ω| large enough (Jianqing Fan, Annals15

of Statistics, 1991), which is satisfied by exponential, uniform, gamma, etc. distributions. We can also define super-16

smooth distributions, with examples such as normal or Cauchy. Let us focus on the approximation error of solving17

the regression problem in Eq. (14). At each iteration we may pick Ṽk+1(ω;x) = (T̃πṼk)(ω;x)I{ω ∈ [−b,+b]}. This18

function is in Fb. Because of the β-smoothness of R̃, the function approximation error ε̃k+1,AE = Ṽk+1 − T̃πṼk19

satisfies ‖ε̃k+1,AE‖∞,1 ≤ c1b
−(1+β) (and faster for super-smooth distributions).20

Providing a convergence rate for the estimation error requires some more (mild) assumptions. Let Fsb,r be the subset of21

Fb with the additional condition that Ṽ (·;x) ∈ Cs([−b,+b]) (for any fix x ∈ X ). The reasoning required to provide a22

covering number to be used by the estimation error analysis goes as follows: (1) If the reward has s-finite absolute23

moments, its CF R̃(·;x) is s-times differentiable (cf. Lemma 7). (2) R̃ can be approximated by a function within24

Fsb,r, with an error that depends on its β-smoothness and the choice of b (almost as before). (3) We can prove that if25

Ṽk ∈ Fsb,r, it stays in the same smoothness class after applying the Bellman operator (with possibly a larger norm r′).26

(4) The estimation error depends on the complexity of Fsb,r. This is a smoothness class, whose covering number is well27

behaving, i.e., logN (ε,Fsb,r) ≤ cb( rε )
−1/s.28

R1, R3: Motivation? Why not represent the distribution instead?29

A: The first motivation is that a new representation opens up possibilities for designing new algorithms. A good example30

is in the field of control theory, where we have tools to analyze a dynamical system in either the time or frequency31

domain. Even though they are equivalent in many cases, designing a controller in the frequency domain might be easier.32

This work brings the frequency-based representation of uncertainty to DistRL. The second motivation is that estimating33

a probability distribution of returns with a parametric model by performing MLE is infeasible in general (due to the34

computational challenge of computing the partition function), whereas estimating CF is not (LL39-41).35

R4, R3: How to solve in practice? How Eq. (14) can be solved? How to deal with the integral?36

A: Performing ACVI requires us to solve a series of regression problems. Algorithmically the only difference here is37

that the input includes both state x and frequency ω. Eq. (14) is only one specific (ERM-based) approach, but is not38

the only one. Focusing on Eq. (14): This is similar to the usual Fitted Q-Iteration. The integral can be approximated39

numerically, for example by discretizing over various ω. As shown in the response to R4: Non-vacuousness ..., we can40

focus on a bounded domain for ω. I expect computing it analytically might not be possible for general parametrization41

of CVF, but one might be able to exploit the regularities of, say, a decision tree to compute it more efficiently (constancy42

of values within a leaf). Also note that estimating ECF has a long history in the statistics and econometrics literature, so43

it is possible to borrow methods studied there too (see references mentioned in LL36-39).44

R4: Other Q&As. Q: Conditional independence without action? A: The current derivations are correct if the policy is45

deterministic, as the action is uniquely determined by the state and the policy. If π is stochastic, we need to condition46

on action too, as you mentioned. Q: Distribution without density (LL109-111). A: CF exists even if the density does47

not. Q: Correct use of Banach fixed point theorem? A: When the paper talks about the convergence (LL174-182), I am48

careful to ensure that we are talking about bounded terms. I will clarify this. Q: Missing π in Parseval? A: You are49

right! Equality is for a different convention for the Fourier transforms. The change in the final result is that π in the50

denominator becomes
√
π. Q: L212: Uniform weighting leads to a finite integral? A: If we limit the bandwidth to b, as51

discussed earlier, we do not need to be worried about the unboundedness of the integral. More generally, the finiteness52

seems to depends on the tail behaviour of T̃πṼk, which for example is satisfied with β-smoothness with large enough β.53


