We first would like to thank all the reviewers for their careful reading and constructive comments. We especially would like to thank Reviewer 6 for their detailed suggestions. Indeed, given the length of the full version (over 50 pages in the supplementary material), compressing our results to an 8 page version proved to be a significant challenge, and we appreciate a reading by a fresh pair of eyes and specific recommendations on ways to improve it. We will certainly take all of these into account.

We are encouraged by all the reviewers’ positive comments on the strength of our work’s contributions, and we will work to incorporate their comments. We spend the remainder of our response addressing specific technical questions and suggestions on the presentation.

Reviewer 3: Regarding the point about strong bounts on parameters: to avoid confusion, we will be more precise in the introduction by saying that we require only weak bounds on the range parameters.

Reviewer 6: We address the reviewer’s points in the order they are stated:

• Regarding the explanation of Algorithms 1 and 2: We will try to expand on our analyses and algorithm description. The full version does contain a precise description of the algorithm, which might help with the overall understanding of the algorithm.

• Regarding PTerrificBall: The magnitude of the noise added in PTerrificBall is actually the Γ parameter in Lemma 4.2 that guarantees the return of a $(c, 2\Gamma)$-terrific ball. We will specify what it is, and say that it stems from the noise added by the invocation of AboveThreshold in the TerrificRadius procedure.

• Regarding recursive calls in Algorithm 1: In Algorithm 1, the parameter k is an upper bound on the number of Gaussian components that can have points in the dataset. So, the dataset X supplied to it actually has points from $k' \leq k$ Gaussian components. When it makes the recursive calls with $k - 1$ as the corresponding argument, it actually means that the dataset it supplies to each call can have points from at most $k - 1$ Gaussian components. So, for example, if in a recursive call, if the dataset it supplies has points from exactly $k' = 2$ Gaussians, then the recursive call will return $k' = 2$ clusters, while the other recursive call will return exactly 2 clusters, even though the upper bound on the number of components supplied to each call is $k - 1$.

• Regarding the PGE procedure: PGE is actually the differentially private learner for high-dimensional Gaussians from [KLSU19], with a small caveat. [KLSU19] is guaranteed to estimate a Gaussian in total variation distance when it gets independent samples from the Gaussian, but in our case, a small fraction of points can be removed in the clustering process. We can prove that with a small multiplicative overhead in sample complexity, it can still learn the Gaussian accurately. We do make this more formal in the supplement.

• Regarding TerrificRadius versus TerrificBall: TerrificRadius is the modified version of GoodRadius of [NSV16]. As discussed within the same paragraph, TerrificBall is an application of two private algorithms: TerrificRadius, followed by the modified GoodCenter algorithm of [NS18].

• Regarding noise addition in Algorithm 2: Yes, in Algorithm 2, the sensitivity is 1. An alternative view of Algorithm 1 could be that it takes sets of points and their respective indices in the original dataset as input, and returns subsets of indices, so that no two subsets index points corresponding to the same Gaussian component. So, in line 3 of Algorithm 2, we would compute the size of each indexing subset privately, and use its corresponding points to learn its Gaussian component. Given a dataset X, and a set of indices S, the function that computes the number of points in X indexed by S, has sensitivity 1. This is because by changing a point in the dataset, the new point may or may not lie in the subset indexed by S. We will modify our presentation to reflect this better.

References

