We thank the reviewers for their valuable comments and time. Please see responses to individual questions below.

Why Exp4 or adversarial bandits algorithm? (R1 and R2)

Currently, we use Exp4 as a sub-algorithm within our new algorithm, LinCB.MS. The exact choice of sub-algorithm is not important, except that it must provide an agnostic regret guarantee. Here, “agnostic” means that the algorithm provides an $O(\sqrt{T})$ regret guarantee against the best policy in class Π, regardless of whether or not the loss distribution is realizable in the sense of Eq. (1). A number of other stochastic CB algorithms enjoy this property, including PolicyElimination [2] and ILOVETOCONBANDITS [1]; these algorithms could be used in place of Exp4. However, LinUCB is not an agnostic algorithm and hence is not a valid choice. Among the agnostic algorithms, we chose Exp4 because it is simple to describe and familiar to readers, even though it was originally designed for the adversarial setting.

The reason the agnostic guarantee is required is that LinCB.MS may invoke the sub-algorithm with a policy class Π_m that is too small to contain the true parameter β^*. It is important for our analysis that the sub-algorithm have low regret against Π_m during this time, even though Π_m doesn’t satisfy the realizability assumption (1). Unfortunately, LinUCB does not enjoy a low regret in the absence of realizability, so we cannot use it here.

This is mentioned briefly at the beginning of section 3 on page 4 of the submission, but we are happy to expand the discussion. We also remark that using stochastic CB algorithms that better adapt to the distribution structure (e.g., to achieve instance-dependent guarantees) is a nice direction for future research.

Validation experiments (R2 and R3)

We believe that our paper represents a substantial theoretical contribution and stands on its own merits even without experiments. Nonetheless, we have performed some basic validation experiments, and the initial results are quite nice. Thank you for encouraging us to try this!

We built our experiments on top of an open source implementation of LinUCB and ILOVETOCONBANDITS which has previously been used in a number of experimental works on contextual bandits [4,5]. For computational efficiency, our implementation of LinCB.MS uses ILOVETOCONBANDITS [1] as the base learner instead of EXP4, which, as discussed above, suffices for our theoretical guarantees.

In Figure [1] we evaluate three algorithms (LinUCB, our algorithm LinCB.MS, and ILOVETOCONBANDITS with knowledge of d_{m^*}, which we call Oracle) on a simple synthetic problem with $d_{m^*} = 10$ and ambient dimension $d = 1000$. We perform 20 replicates and tune hyperparameters for each algorithm, visualizing the cumulative regret, averaged over replicates. We see that LinCB.MS consistently outperforms LinUCB, and sometimes even outperforms Oracle. This latter phenomenon can be explained by the fact that while LinCB.MS typically advances to $d_m > d_{m^*}$ (typically 32 dimensions), it sometimes stays below d_{m^*} (e.g., 8 dimensions), where it can learn a near optimal policy faster than Oracle.

We will definitely add these and related experiments to the final version of the paper, and provide a detailed description of our experimental methodology.

References

