
We thank the reviewers for their time, thoughtful reviews, and feedback; the suggestions will help us strengthen the1

paper. (R1) found the paper to be original and insightful and the derivations to be elegant; (R2) agrees that this is a new2

research direction that deserves to be explored; (R1) and (R3) noted the clarity of the writing. We thank the reviewers3

for their kind words. The concerns raised by the reviewers focus on how our methods relate to other methods in the4

literature and the convergence rates. We address each in turn, along with other minor questions.5

Relationship to other methods. Firstly, we added all suggested references, including related work from Hedy6

Attouch; we thank the reviewers for bringing these to our attention. We have expanded the discussion of other methods7

in the literature including Condat-Vu and Hamiltonian perspectives on acceleration. (R3) noted that we might obtain8

other existing methods as a discretizations of Hamiltonian descent. To address this we have added a derivation of PDHG9

from the Hamtilonian descent ODE to the appendix; unfortunately Condat-Vu does not fit neatly into our framework (at10

the moment at least).11

(R3) had some concerns about the discretization trick we used to derive a connection between ADMM and the12

Hamitlonian ODE. One can view it from the other direction—the Hamiltonian ODE can be recovered by taking the13

step-size in ADMM to zero. The ‘trick’ we use is standard, see, e.g., the cited work by Wilson, Recht, and Jordan, 2018.14

Finally, we provide two other ‘vanilla’ discretizations that do not use that particular trick.15

Convergence questions. Regarding convergence rates of ADMM, (R1) asked whether this Hamiltonian perspective16

on ADMM will yield a distinct convergence rate analysis. This is an interesting question that we must leave to future17

work. Ultimately, each discretization scheme is individually analyzed and ADMM has been extensively studied in the18

literature where an O(1/k) rate can be obtained, e.g., by He and Yuan, 2012 (we have added this reference too).19

(R3) noted that the O(1/k) convergence rate in our analysis is not matched by experiment. Our analysis is a worst-case20

analysis that does not assume strong convexity - for some problems it may well do better than the worst-case rate. In21

particular the two examples we presented have (local) strong convexity - we have added an additional proof to the22

appendix that shows linear convergence under (global) strong convexity. Now the experimental results and the theory23

match for the strongly convex case.24

(R1) suggested extending the analysis to non-smooth Hamiltonians and pointed out some potential difficulties, along25

with a reference. We agree that this would be very useful work and would like to tackle it in the future, although the26

difficulties pointed out are significant.27
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Figure 1: Higher dimensional regular-
ized least squares example. Problem (14)
in original draft.

Additional experiments. (R2) asked for examples on higher dimensional28

data. We have added additional runs of the existing experiments scaling29

to higher dimensions - we include here a sneak preview of the results of30

the same problem as example 1 where the data is 1000 × 1000 instead of31

50× 50, in Figure 1.32

Generality of composite optimization. (R3) was concerned that the com-33

posite optimization problem was not sufficiently general to warrant interest.34

This problem (the sum of two objectives related by a linear mapping) has35

been studied extensively in the literature and many problems can be written36

in this form, including cone programs, regularized loss minimization, etc.37

Since it has so many applications, many algorithms have been developed to38

solve it, including ADMM, FISTA, PDHG, Condat-Vu etc. We think this39

is, in fact, one of the most important problems in optimization.40

Importance of affine invariance. (R3) did not agree that the affine invari-41

ance property was important. Affine invariance provides robustness to poor42

conditioning without explicit knowledge of the conditioning; it is one of the43

main advantages that second-order methods have over first-order methods.44

For this reason, it is interesting to have a first-order method (Hamiltonian45

descent) that is affine invariant. We refer (R3) to Boyd and Vandenberghe,46

2004, Sec 9.5 where the importance of this property is discussed. In fact, the47

message in Figure 1 of the original draft was to demonstrate numerically the48

practical impact of affine invariance; we generated a sequence of problems49

with worsening conditioning and showed that both standard and accelerated gradient techniques suffer greatly when the50

conditioning worsens, but our technique is unaffected. Since our technique is unaffected by the worsening conditioning51

it would stand to reason that for some problems it would do better than an accelerated gradient technique.52


