
We thank the reviewers for their valuable comments. Relevant points raised are consolidated and addressed together.1

Setting:2

• Edge constraint (Reviewer 1): Define ki as the number of edges in Gi. k1 and k2 can be distinct and take arbitrarily3

different values in the range [0, k]. We analyze the minimax error rate, i.e., the error performance for the worst-case4

combination (k1, k2). This represents structure learning in the most difficult combination. The minimax rates5

take different forms in different parameter regimes, as specified in the paper. Analysis in each regime hinges on6

identifying the worst-case combination in that regime.7

• Side Information (Reviewer 3): We thank reviewer 3 for sharing their perspective on side information, and indeed8

their interpretation is also valid. We comment that the case of unilateral side information (e.g,. G2 serves as the side9

information for G1) is a special case of the bi-lateral scenario that we consider, in which each graph serves as the10

side information for the other one. We can recover unilaterial side information results by changing the metric in (7)11

from mini∈{1,2}{|Ei∆Êi|} ≥ d to |E1∆Ê1|} ≥ d.12

Novelty in analysis (Reviewer 3): We, respectfully, disagree about lack of novelty in analysis. To furnish a context:13

1. Santhanam and Wainwright, 2012 [SW2012] focuses on exact recovery and provides both lower and upper bounds.14

2. Scarlett and Cevher, 2016 [SC2016] focuses on approximate recovery and provides only a lower bound.15

• A hitherto un-investigated scenario: Besides generalizing the regimes [SW2012] of [SC2016] for joint recovery,16

we also provide upper bounds on the approximate recovery, which is the missing scenario in [SW2012] and [SC2016].17

Hence, as a special case of our results we can recover the results for this missing regime for single-graph structure18

learning as well. The way different parameter regimes for this scenario are constructed and the ensuing analyses are19

distinct from ensemble construction and proofs of both [SW2012] and [SC2016].20

• Generalization of other scenarios Please note that generalizing the other scenarios from one graph to two graphs21

is non-trivial. Even though the ensemble selections are inspired by [SW2012] and [SC2016], their choices and the22

techniques for analyzing the minimax rate are different. The similarity in some of the approaches is inevitable (e.g.,23

Fano’s inequality is pivotal for proving converses in information theory).24

• New insights for ML decoding: Finally, we note that [SC2016] provides the lower bounds identical or near-identical25

to those of exact recovery in [SW2012] for a wide range of edge-bounded Ising models, based on which it was26

conjectured that approximate recovery is as hard as exact recovery for the complete edge-bounded subclass. In this27

paper, we also establish that this conjecture is true for the edge-bounded subclass for an ML based decoder.28

Relevance to the ICASSP paper (Reviewer 2): There are significant differences in settings, objectives, and results:29

• Settings (parameter regimes): The ICASSP paper focuses on very specific Gaussian and Ising models (specific30

parameter regimes). In this paper we do not consider Gaussian, and focus on a much broader subclass of Ising31

models. Specifically, the ICASSP paper focuses on an Ising setting with k ≤ p
4 and restrictions on the girth and32

separation criterion. The results are provided only for the specific regime λ = O(
√
k−1) for the relative choices of33

k ≤ p
4 and λ. In this paper, we consider all values of k and all possible regimes for the relative choices of k and λ.34

• Objective (approximate vs. full recovery): The focus of the Ising model section of the ICASSP paper is only on35

approximate recovery, while we consider both approximate and full recovery objectives.36

• Results (necessary & sufficient conditions): The ICASSP paper provides only necessary conditions (lower bounds)37

for the specific class mentioned, while we provide both necessary and sufficient conditions for the general settings.38

Sample complexity results:39

• Shared cluster (Reviewer 1): Even though not presented in the paper, we can readily show that in most parameter40

regimes the performance in the shared cluster is similar to single-graph recovery with pη nodes and at most kγ edges.41

• Results in Table 1 (Reviewer 3):42

– Tightness: While we agree that the bounds are not very tight, we also would like to emphasize that that is the43

case even for the simpler problems in the literature (e.g., single graph recovery). Our bounds are not any looser44

than those for single-graph recovery. Also, in some regimes the results are tighter than others. For instance, when45

k = O(p) the difference is only a factor k. The mismatch is more profound in denser graphs.46

– Effect of d: The analyses of the necessary conditions in Theorems 2 and 3 and sufficient conditions in Theorem 147

show that d does not affect the asymptotic scaling rate of their respective bounds even when d scales as fast as48

linearly with k. For instance, in Theorem 1, d appears only in a logarithmic factor scaling at most at the rate of49

log k which is dominated by k log p in A1 and A2. That is why the summary results in Table 1 do not include d.50

We will add a comment to highlight this in the final version.51

Numerical results: Reviewer 1 is correct (the solid curve represent ML in Fig. 2). We will clarify this in the final52

version. Also, as Reviewer 1 suggested, we will update Fig. 3 to showcase an average performance over an ensemble53

of random graphs. Also, we will provide more explanation on recovery accuracy as we increase d and its interplay54

with the computational cost of ML. Specifically, the main observation is that as we slightly increase d, while the55

computational complexity improves slightly, the recovery declines rapidly. Regarding the question of Reviewer 3,56

we note that the numerical evaluations were carried out on a family of sparse graphs, for which the ML estimation57

was tractable and implemented via counting the number of instances a vertex has the same value as other vertices. In58

the settings we examined, we did not observe any phase transition in the error rate when varying k, p, η.59

Typos: We thank the reviewers for noting the typo on γk, which we will fix. Also, the two appendices submitted as60

supplementary documents were generated independently. We will consolidate them for the final submission.61


