We thank the reviewers for their comments and time. We are glad there is a positive consensus: The proposed method and the analysis are recognized as novel and practically interesting in some important problem settings. Our paper is found well-written.

For the sake of completeness, we will address some of the minor remarks by the reviewers below:

R3: Advantages against [2].

The arithmetic cost per iteration of [2] is cubic in n (as it requires a full singular value decomposition in general). Also, your comment made us realize that we missed a key qualifier information in Table 1. $1/\varepsilon^2$ iteration complexity of [2] holds only when the objective function is strongly-convex (see Section 4 in [2]). We will clarify this.

Based on this clarification we hope that the reviewer will now reconsider our score even more positively.

R3: Convexity in matrix completion.

There might be a misunderstanding. We consider the conventional convex matrix completion template with least squares loss with an additional box constraints. See Section 2.3.3. in [DY] for a similar setup (regularized version in the deterministic setting).

R1: Adding proof sketch.

As suggested by the reviewer, we can extend the proof sketch the help the readers navigating the proof.

R2: Where does (29) follows from?

It follows from Lemma 1 in [4]. We cite it in the previous sentence. We will clarify this in the text.

R2: Details on the inequality on Line 532.

There is a typo in line 532, thank you for pointing it. Our bound is missing the δ terms. The correct version of the bound is $(1 - \delta\eta_k)(\beta_k-1 - \beta_k) - \delta\eta_k\beta_k < 0$. One can verify this bound by mathematical induction technique.

R1,R2,R3: Other comments.

We thank all reviewers for their constructive comments on the clarity and presentation. We will consider their suggestions while preparing the camera-ready.