
We thank all the reviewers for their constructive comments and useful suggestions.1

Q (R1): "Comparison with other methods like encoder" & "why do we need this technique"2

A: This is a very important point that we need to clarify in our paper. GD inversion is not a straw man here: almost all3

the prior work on using generative models for solving inverse problems (see reference [3,4,10-14] in our paper) uses4

gradient descent as the main inversion technique so improving upon that is significant. There are also methods that5

train encoders or even end-to-end reconstruction methods from measurements, but are harder to train and are tuned to a6

specific inverse problem as opposed to a general method, see [3]. We will expand on this in the paper.7

As compared to GD-based methods, our algorithm is much more efficient. GD costs on average 1.2 minutes to compress8

one single image (momentum makes the process faster but still slower than our method). While our algorithm takes9

only 0.5 second. See appendix for time comparisons.10

We have compared the performance of GD with our method under different network architectures, i.e. different levels11

of expansiveness.12

Our paper focuses on fundamental theoretical results, since there are very few in this area. In practice our technique can13

also be used as a good initialization for gradient-based methods. We verified this for DCGAN. See reply for R3.14

Q (R1): On reductions *from* known NP-hard problem A: You are correct, of course. We fixed the confusing15

expression.16

Q (R1): whether the binary case is representative for general case17

A: Thank you for your comment. We were able to extend our proof from binary to general real-valued inputs. We18

achieve this by constraining an intermediate layer to be binary, using an additional output that enforces an intermediate19

layer to have binary values. Combining this with our previous argument establishes that it is NP-hard to invert a 4-layer20

network with real-valued inputs.21

Specifically, we design a network f : Rk → R2 as follows: After input layer z ∈ Rk, we add 2 ReLU layers to make22

sure the output of second hidden layer u ∈ [−1, 1], i.e. u = min{max{z,−1}, 1}.1 Afterwards, we copy the entire23

network we used for the binary proof to layer 3 (the original m hidden nodes as layer 3’s first m nodes) and to the24

output layer o (the original scalar output as the first observation o1) but add 2 more nodes to layer 3 and one node for25

output. The previous binary argument makes sure that if u has to be binary, we could solve 3SAT. Meanwhile, we let26

the two additional nodes on layer 3 to be a =
∑

i max{ui, 0} and b =
∑

i min{ui, 0} and the second observation o227

to be a+ b, which actually satisfies a+ b ≡
∑

i |ui|. At inference time, we let this node o2 to be equal to k. In this way28

to test for exact recovery,
∑k

i=1 |ui| = k and one has to let each ui to be +1 or -1.29

Therefore we show that for a 4-layer real network, it is NP-hard to determine if it could be exactly recovered for a given30

observation.31

Q (R2): Comparison with ’invertibility of convolutional neural networks’ or other RIP properties32

A: We will add the discussion with (Gilbert et al.) and (Bourrier et al.) as suggested. Our work is substantially different33

from (Gilbert et al.) since they still work on linear mappings (convolutional layers without activation functions), while34

our work is targeting ReLU or LeakyReLU activations.35

Thank you for the pointer of l∞-RIP property. Typically RIP is for fat matrices with structured input while we deal with36

tall matrices. Also we only need the lower bound side of the RIP, so we redefined the condition in the paper. But indeed37

the transpose of the weight matrices should satisfy lower bound side of l∞-RIP. We will add the discussions properly in38

the revised version.39

Q (R2): the hypothesis that mi coordinates need to be bounded away from zero is not natural40

A: For the l∞ case, we have shown that for random matrices, we do not explicitly need this requirement, as shown41

in Corollary 1. When the network is expansive and with random weights, there will be enough mass on the positive42

observations with high probability.43

Q (R3): Additional Experiments on DCGAN:44

Thank you for your suggestion. We trained a DCGAN architecture using MNIST data. We used 3 convolutional layers45

with ReLU activations that are expanding and the last layer being convolutional with sigmoid activation. We used46

projected gradient descent (PGD, gradient descent on the last layer, and projection over the first 3 layers) for a denoising47

task. We use our algorithm as an initialization for the projection step. Over multiple runs, we compare inversion using48

1) GD, 2) GD with momentum, 3) PGD with random initialization (for the projection step), and 4) PGD with our49

scheme for initialization. The average relative error for each method was: 1) 0.26, 2) 0.25, 3) 0.17, and 4) 0.088. This50

additional experiment shows the benefits of our method for convolutional architectures. We will include more details in51

the final paper.52

1Here max{z,−1} could be achieved through ReLU(z+ 1)− 1, and similarly for the min operation.


