
We thank all the reviewers for their constructive comments and useful suggestions. Unfortunately there is significant1

misunderstanding of our contributions. We will try to clarify here and also expand this in our paper.2

Q (R1, 4): Highlight our contributions:3

A: We proposed the first primal-dual algorithm for constrained problems. We are significantly more efficient compared4

to the previous state of the art, both theoretically and empirically. Our method applies to a wide class of `1 norm and5

trace norm constrained problems including: ElasticNet, regularized SVMs and phase retrieval, among others. This is a6

wide class of problems and a large body of prior optimization methods have been published. We have the most efficient7

provable optimization method and this is a significant contribution.8

Q (R1, 4): How is the sparsity constraint chosen in practice? What if sparsity is underestimated?9

A: It’s always safe to choose a relatively large target sparsity s. If one initially chooses a small s, one can increase it if10

iterates converge but have smaller `1 norm than the constrained value. If the sparsity is still underestimated, the sparsity11

constrain dominated the `1 constrain, and we will end up obtaining a solution with higher sparsity.12

Q (R1): Provide test accuracy to highlight effect of regularization13

A: We will add test accuracy as well as a comparison with different levels of regularization in the revised version.14

However, our focus is on strongly convex objectives that guarantee a unique minimizer (same test error for different15

algorithms), train accuracy has fully interpretation for the performance of the proposed algorithm compared among16

others. Relevant literature commonly only reports train error in e.g. [1] or the DGPDC or BFW papers.17

Q (R1): How to obtain x̃ in equation 8?18

A: Equation 8 is a quadratic function about x. Let’s say x̃ = argmin‖x‖0≤s,‖x‖1≤λ‖x − c‖22. Then we obtain x̃ by19

performing an `0 projection followed by an `1 projection for c.20

Q (R2): Why Accelerated Projected Gradient Descend (AccPGD) outperforms SVRG? Multi-threading?21

A: We implemented our algorithms as well as the baselines in C++ with the Eigen library, without multi-threading/multi-22

processing. As for SVRG, please note that we are solving the constrained problem, and SVRG has to perform a23

projection in every inner iteration. In the inner iteration of SVRG, the gradient computation is about O(sm) scaled by24

nnz(A)/nd since our data is sparse, where s is the sparsity during the inner step, and m is the mini-batch size. While25

projection on the `1 ball requires O(d) (see Duchi et al. 2008). That is, projection on the `1 ball can take more time26

compared to the gradient computation. Empirically, projection takes about 75% of the CPU time of SVRG, and about27

40% for AccPGD. As a side proof, the numerical results of [1] show that the performance of SVRG is not competitive.28

Q (R2, 4): Compared with Doubly Greedy Primal Dual Coordinate (DGPDC) and Block Frank Wolfe(BFW)?29

A: We are motivated from the primal dual reformulation like DGPDC and recent progress on FW like BFW, but our30

new algorithm is not a trivial combination of previous results because: 1) This is the first work to analyze constrained31

problems using a primal-dual formulation. The challenges come from the non-symmetric formulation on primal and32

dual variables. Prior work bounds the iteration progress and this will not work for our analysis. 2) Besides, compared to33

our results, the analysis of DGPDC highly relies on the sparsity of the whole iterate trajectory, which actually has34

no obvious guarantee to be small. While our analysis only depends on primal optimal’s sparsity, and is guaranteed35

by the `1 constraints. 3) The inexact update in our algorithm 2 boosts the empirical performance, but also introduces36

error in every iteration that perturbs the primal progress, and hence imposes more difficulties on the analysis under the37

primal-dual framework.38

Empirically we could not compared with DGPDC since it is not capable of solving constrained problems, but theoreti-39

cally our sparsity requirement is more natural (on the primal optimal) rather than on the entire iterate trajectory. As for40

BFW, both empirically and theoretically we have clearly demonstrated our improvements, when computing the full41

gradient is expensive.42

Q (R2): The dual variable is assumed to be sparse?43

A: This is a very important point. We do not assume that the dual variables are sparse. In fact they will not be. Our44

benefit is replacing the dimension d to primal sparsity s. We will make sure this is more clear in the paper.45

Q (R4): Why primal dual formulation?46

A: The primal-dual reformulation ensures its gradient computation to be dominated by a bilinear term. Therefore, when47

we compute the update with some (low-rank/sparse) structure, we are able to maintain the gradient and keep a cheap48

update that is independent to the ambient dimension. For the primal framework, this only happens when the gradient is49

linear in the update variable. This is clearly demonstrated in the theoretical vignette section (line 99 - 106).50

We have also mentioned in the introduction (line 30 - 39): the primal-dual formulation allows us to exploit the sparsity51

nature of the solution, and to reduce computational complexity from the ambient dimension to the solution’s sparsity.52

Q (R4): Time complexity concerns and Elastic Net53

A: About quick select of complexity O(d), we choose the k-th largest value with linear operations and loop over the54

coordinates to pick up all values greater than this value. Indeed the update operation is also O(d) or O(n) but it doesn’t55

affect the overall complexity. Line 104 comes from the warm-up problem where f = 1/2x>Ax and therefore PGD56

costs O(d2). As for elastic net we are refering to the constrained version on the `1 regularization.57
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