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Reviewer 1: 1. Analysis of TGP-UCB depends on a Hoeffding type concentration bound for self-normalized processes3

and analysis of ATA-GP-UCB depends on a Bernstein type concentration bound in each direction. Thus, if we can4

derive a Bernstein type bound for self-normalized processes which depends on the (1 +α)-th moments of rewards, then5

we may not have to switch to the feature space to get optimal regret. 2. Instead of truncating raw observations to build6

a robust estimator of f , one can use a median of means type estimator to obtain a slightly better bound, though not7

optimal, for TGP-UCB. 3. ATA-GP-UCB requires knowledge of the horizon T , but one can use a standard doubling8

trick to get around this. 4. It is indeed an interesting direction to explore when α and v are misspecified. In practice, as9

suggested by our real data experiments, one can estimate α and v from data and use those in our algorithms.10

————————————————————————————————————————-11

Reviewer 2: 1. Computational complexity for continuum arm sets: One of our main aims is to quantify the12

achievable statistical efficiency of nonparametric algorithms for optimization under heavy-tailed noise from a theoretical13

standpoint. This is the reason why we do not delve in detail into the specifics of how the function gt(x) := µ̃t−1(x) +14

βtσ̃t−1(x) over all x ∈ X ⊂ Rd is optimized. This practical issue also arises in other well-known bandit optimization15

settings such as finite dimensional linear bandits – the celebrated LinUCB or OFUL algorithms do not address how16

to solve the UCB optimization problem over a continuum set. In this regard, we mention that it is well known in the17

BO literature that one can approximately maximize gt by grid search / Branch and Bound methods such as DIRECT18

(Brochu et al. (2010)). In fact gt can be maximized within O(ε) accuracy by making O(ε−d) calls to it, yielding19

a per-step time complexity of O(m2
t (t + ε−d)). Another viewpoint for considering a continuum arm set is that it20

serves to model the case of a large, finite set of arms which share regularity structure with respect to their rewards,21

enforced through a kernel function, and makes the analysis of the algorithm cleaner due to results in Gaussian process22

theory. 2. Versus the "bandits with heavy tail" paper: Compared to this paper’s setting, "bandits with heavy23

tail" indeed makes weaker assumptions (i.e., no regularity structure on arms’ rewards) and shows a more general24

but weaker regret bound (especially if the number of arms is very large) which is not surprising – more structure25

allows for lower regret. Our results show how smoothness in the arms’ rewards (which is common in practice) can26

be exploited to achieve better regret. Numerical comparisons of the Robust-UCB algorithm (with truncated mean27

estimator) of "bandits with heavy tail" paper with our algorithms on real datasets (figure is given for lightsensor28

data) indicate that ATA-GP-UCB-Nyström performs much better than Robust-UCB, suggesting that it is indeed able29
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0.6 to capture the smoothness structure present in the data. Theoretically if
there are only K arms, the cumulative regret of ATA-GP-UCB will be
better than that of Robust-UCB as long as γT ≤ K

α
1+α . This holds if

K
α

1+α ≥ (lnT )d for SE kernel and if K
α

1+α ≥ T
1

1+ν for Matérn kernel
(on R). This is typically true if K is large and in fact, for a continuous
set of arms the analysis of Robust-UCB yields a trivial regret upper
bound of infinity. This introduces additional challenges that require a
different set of ideas and is quite representative of real world problems,
e.g., hyperparameter tuning in ML. 3. More details on time and space
complexity: For SE kernel γt is poly-logarithmic in t (i.e., γt << t),

30

and since mt = Õ(γt), per step time complexity, in practice, for continuous X is Õ(t+ ε−d). For Matérn kernel, the31

complexity is Õ(tp(t+ ε−d)), 1 < p < 2. Now for finite X , we only need to store the number of times each arm has32

been played so far and thus per step space complexity does not grow linearly with t. For continuous X , we indeed33

need to store all previously chosen arms, but this linear dependence on t is subsumed by the larger |X | term. Thus34

in practice, the space needed is O(t + mt(mt + ε−d)) = O(mt(mt + ε−d)) for small enough ε. So for continuous35

X and for practical purposes, time and space complexities can be obtained by replacing |X | with ε−d in those given36

in the paper. 6, 8, 9: These are typos. 7: Xt is the set {x1, . . . , xt}. 10. Setting δ = 1/T , we can achieve expected37

cumulative regret of same order (upto some constant factor). 11: This holds, for example, Matérn kernel on R2 with38

ν = 3.5 when variance of the rewards is finite. 13: True, our algorithm is not optimal for Matérn kernel as mentioned in39

Remark 7. 14: We meant to say that existing BO algorithms like GP-UCB fails under heavy-tailed noise (figure 1(f)).40

Reference: Brochu, Eric, Cora, Vlad M., and de Freitas, Nando. A Tutorial on Bayesian Optimization of Expensive41

Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. CoRR, 2010.42

————————————————————————————————————————-43

Reviewer 3: 1. Setting yt = 0 if |yt| > bt and blowing up the confidence width of GP-UCB by bt, together help us to44

construct a robust estimate of f and a "good" confidence set around this estimate which contains f (figure 1(f)). Instead45

of truncating, one can also use a median of means type estimator in the feature space and obtain optimal regret. 2. The46

result will hold as long as m̄ > 1/l2 and m̄ = Θ(2 log4/e(T
3)). 3. We compared for different choices of m̄ and as47

long as m̄ satisfies the above constraints, we found that increasing m̄ improves the performance to some extent. 4. We48

discretized the set [0, 1] into 100 evenly spaced points and generated a random sample uniformly from those 100 points.49


