
We thank the reviewers for their time, insightful judgements, and suggestions for improvements. Our key contributions1

include proposing new research directions on conditional graph generation, developing novel generative architectures2

for graphs that keep node-order permutation invariance, and creating two benchmark datasets with extensive model3

evaluations. We appreciate that the reviewers clearly recognized all these contributions and reached an agreement4

on a very positive evaluation. Next, we will address the insightful questions raised by reviewers, related to the5

claimed property to generate graphs with different sizes (Rev2), initialization in the training procedure (Rev2),6

additional experiments on molecule generation (Rev2) and ablation study (Rev3). As Rev1 accurately summarized our7

contributions and proposed only a minor issue that is fairly easy to solve, we next only focus on questions raised by the8

other reviewers but will definitely improve the readability of the whole draft to avoid other similar issues.9

Generating graphs with flexible sizes (Rev2). We have explained how to generate graphs of flexible sizes in the10

second last paragraph on page 4 (Firstly, . . .). Sorry for the confusion caused and we will make the statements clearer11

in the final version. Particularly, since we apply the novel latent space conjugation trick (details on page 4) and compute12

a shared distribution z̄ for all nodes, we can then draw arbitrary numbers of random samples from z̄ to generate graphs13

of any sizes.14

Initialization via spectral embedding (Rev2). Although neural networks training could be sensitive to initialization,15

the initialization via spectral embedding is not that crucial in our case. Simply randomized initialization can also16

provide fairly good results, although initialization via spectral embedding may slightly help with the convergence17

in model training and the robustness of the results. Moreover, as our current experiments depend on medium-size18

networks, the runtime induced by computing spectral embedding is only a very small portion of the whole complexity19

(. 10%). Given above observations and considering the paper has already made a very broad range of contributions20

(from problem settings, to methodology and experiments), we tend to restrict our discussion on spectral-embedding21

initialization so that readers may focus on more important points that we aim to emphasize. However, we appreciate22

that Rev2 raised this confusion and we will definitely give a more elaborated discussion in our final version.23

That being said, we go back to argue for spectral embedding, regarding its complexity and the permutation in-24

variance. Actually, the computation of spectral embedding could be much less than O(n3). Suppose the network25

contains |E| edges and the embedding dimension is k. Then, spectral embedding via the top-k SVD computation26

(Augmented Lanczos Bidiagonalization Algorithm [Baglama et al. 2005]), is with complexity O(T (|E|k + k3)),27

where T is the number of iterations that depends on how precise the solution is (typically viewed as a constant in28

practice). As |E| � O(n2) and k � n for large real networks in practice, the above complexity is much less than29

O(n3). Moreover, as we are considering GCN-based training, each step of backpropagation could be with complex-30

ity O(|E|k) (consider GCN has the operation “adjacency matrix × node embeddings”). So spectral embedding is31

at most with the same complexity as GCN training, although the former sounds to be relatively complex because32

GCN training is typically accomplished by using much more parallel computation resources than spectral embedding.33

Regarding permutation invariance, it is an important and always needed property in graph encoding and decoding34

procedure but is not relevant to initialization of node representation vectors. In other words, any types of initial-35

ization do not affect permutation invariance (How powerful are graph neural networks [Xu et al. 2019]). To make36

it clearer, consider one output of the graph encoding procedure, µ̄ in Eq. 1, for example: For any permutation ma-37

trix P ,
∑n
i=1 gµ(PX,PAPT )i =

∑n
i=1(PÃPTReLU(PÃPTPXW0)W1)i =

∑n
i=1(PÃReLU(ÃXW0)W1)i =38 ∑n

i=1 gµ(X,A)i, where we use PTP = I and ReLU(P ·) = PReLU(·). Such equalities are always satisfied for any39

X (any node representation vectors).40

Application in molecule generation (Rev2). We do not aim at molecule generation in this work, but rather general41

network generation without the need of domain knowledge. Such flexibility allows our framework to generate networks42

for a wide range of domains (e.g., social networks, gene networks in our experiments and probably many others). To the43

best of our knowledge, previous works on molecule generation require chemical valency to guide the training procedure,44

so evaluating our method and comparing it with other chemical-valency-dependent approaches are unfair. However, it45

is an interesting future direction to investigate how to incorporate domain constraints like chemical valency into our46

framework.47

Ablation study (Rev3). We agree that ablation study without adversarial training is very important, as we claim the48

permutation invariance to be an important property for good graph generation models. In fact, the first baseline GVAE in49

our experiments is exactly GVGAN minus the adversarial training module, which is trained w.r.t. Eq.3 and referred to as50

modified GVAE in the paragraph following Eq.3. We use this modified GVAE because the original GVAE (Variational51

graph auto-encoders [Kipf et al. 2016]) is unable to generate graphs with flexible sizes and different semantic conditions52

for meaningful comparisons with GVGAN. This is briefly mentioned in the Baseline section in experiments, and we53

will definitely make it clearer in the final version.54


