We thank the reviewers for their time, insightful judgements, and suggestions for improvements. Our key contributions 1 include proposing new research directions on conditional graph generation, developing novel generative architectures 2 for graphs that keep node-order permutation invariance, and creating two benchmark datasets with extensive model 3 evaluations. We appreciate that the reviewers clearly recognized all these contributions and reached an agreement 4 on a very positive evaluation. Next, we will address the insightful questions raised by reviewers, related to the 5 claimed property to generate graphs with different sizes (**Rev2**), initialization in the training procedure (**Rev2**), 6 7 additional experiments on molecule generation (Rev2) and ablation study (Rev3). As Rev1 accurately summarized our contributions and proposed only a minor issue that is fairly easy to solve, we next only focus on questions raised by the 8

⁹ other reviewers but will definitely improve the readability of the whole draft to avoid other similar issues.

Generating graphs with flexible sizes (Rev2). We have explained how to generate graphs of flexible sizes in the second last paragraph on page 4 (*Firstly*, ...). Sorry for the confusion caused and we will make the statements clearer in the final version. Particularly, since we apply the novel latent space conjugation trick (details on page 4) and compute a shared distribution \bar{z} for all nodes, we can then draw arbitrary numbers of random samples from \bar{z} to generate graphs of any sizes.

Initialization via spectral embedding (Rev2). Although neural networks training could be sensitive to initialization, 15 the initialization via spectral embedding is not that crucial in our case. Simply randomized initialization can also 16 provide fairly good results, although initialization via spectral embedding may slightly help with the convergence 17 in model training and the robustness of the results. Moreover, as our current experiments depend on medium-size 18 networks, the runtime induced by computing spectral embedding is only a very small portion of the whole complexity 19 $(\lesssim 10\%)$. Given above observations and considering the paper has already made a very broad range of contributions 20 (from problem settings, to methodology and experiments), we tend to restrict our discussion on spectral-embedding 21 initialization so that readers may focus on more important points that we aim to emphasize. However, we appreciate 22 that Rev2 raised this confusion and we will definitely give a more elaborated discussion in our final version. 23

That being said, we go back to argue for spectral embedding, regarding its complexity and the permutation in-24 variance. Actually, the computation of spectral embedding could be much less than $O(n^3)$. Suppose the network 25 contains |E| edges and the embedding dimension is k. Then, spectral embedding via the top-k SVD computation 26 (Augmented Lanczos Bidiagonalization Algorithm [Baglama et al. 2005]), is with complexity $O(T(|E|k + k^3))$, 27 where T is the number of iterations that depends on how precise the solution is (typically viewed as a constant in 28 practice). As $|E| \ll O(n^2)$ and $k \ll n$ for large real networks in practice, the above complexity is much less than 29 $O(n^3)$. Moreover, as we are considering GCN-based training, each step of backpropagation could be with complex-30 ity O(|E|k) (consider GCN has the operation "adjacency matrix \times node embeddings"). So spectral embedding is 31 at most with the same complexity as GCN training, although the former sounds to be relatively complex because 32 GCN training is typically accomplished by using much more parallel computation resources than spectral embedding. 33 Regarding permutation invariance, it is an important and always needed property in graph encoding and decoding 34 procedure but is not relevant to initialization of node representation vectors. In other words, any types of initial-35 ization do not affect permutation invariance (How powerful are graph neural networks [Xu et al. 2019]). To make 36 it clearer, consider one output of the graph encoding procedure, $\bar{\mu}$ in Eq. 1, for example: For any permutation matrix P, $\sum_{i=1}^{n} g_{\mu}(PX, PAP^{T})_{i} = \sum_{i=1}^{n} (P\tilde{A}P^{T}\text{ReLU}(P\tilde{A}P^{T}PXW_{0})W_{1})_{i} = \sum_{i=1}^{n} (P\tilde{A}\text{ReLU}(\tilde{A}XW_{0})W_{1})_{i} = \sum_{i=1}^{n} g_{\mu}(X, A)_{i}$, where we use $P^{T}P = I$ and $\text{ReLU}(P \cdot) = P\text{ReLU}(\cdot)$. Such equalities are always satisfied for any 37 38 39 \overline{X} (any node representation vectors). 40

Application in molecule generation (Rev2). We do not aim at molecule generation in this work, but rather general network generation without the need of domain knowledge. Such flexibility allows our framework to generate networks for a wide range of domains (e.g., social networks, gene networks in our experiments and probably many others). To the best of our knowledge, previous works on molecule generation require chemical valency to guide the training procedure, so evaluating our method and comparing it with other chemical-valency-dependent approaches are unfair. However, it is an interesting future direction to investigate how to incorporate domain constraints like chemical valency into our framework.

Ablation study (Rev3). We agree that ablation study without adversarial training is very important, as we claim the permutation invariance to be an important property for good graph generation models. In fact, the first baseline GVAE in our experiments is exactly GVGAN minus the adversarial training module, which is trained *w.r.t.* Eq.3 and referred to as modified GVAE in the paragraph following Eq.3. We use this modified GVAE because the original GVAE (Variational graph auto-encoders [Kipf et al. 2016]) is unable to generate graphs with flexible sizes and different semantic conditions for meaningful comparisons with GVGAN. This is briefly mentioned in the **Baseline** section in experiments, and we

⁵⁴ will definitely make it clearer in the final version.